Skip to main content

Abstract

Vaccinology is a growing field in which plant-based vaccines constitute an attractive development trend. This approach consists of the use of plant cells as biofactories of immunoprotective antigens, which can be administered to the matrix of plant biomass by the oral route or parenterally after purification. Rationale of a plant-based oral vaccine relies on the ability of inducing immune response by the gut-associated lymphoid tissues (GALT). Preclinical development stages of this kind of platform comprise the following steps: (1) immunogen design and gene synthesis; (2) expression of the immunogen of interest by means of plant genetic engineering approaches, such as stable or transient transformation by Agrobacterium tumefaciens, biolistics, or using viral-based vectors or chimeric viruses that serve as expression vectors or carriers; and (3) evaluation of the antigenic, immunogenic, and immunoprotective properties. This chapter describes the basic concepts behind this biotechnology approach, which is considered to have the potential to introduce products into the market in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez ML, Pinyerd HL, Crisantes JD, Rigano MM, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA (2006) Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 24:2477–2490

    Article  CAS  PubMed  Google Scholar 

  • Buetow DE, Korban SS (2000) Transgenic plants producing viral and bacterial antigens. AgBiotech Reviews, http://www.agrobiotechnet.com/Reviews.asp?action=display&openMenu=relateditems&ReviewID=708&Year=2000

  • Curtiss R III, Cardineau GA (1997) Oral immunization by transgenic plants. United States Patent 5,654,184

    Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 26:659–667

    Article  CAS  PubMed  Google Scholar 

  • Drake PM, Thangaraj H (2010) Molecular farming, patents and access to medicines. Expert Rev Vaccines 9:811–819

    Article  CAS  PubMed  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Rappuoli R (2005) Application of microbial genomic science to advanced therapeutics. Annu Rev Med 56:459–474

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger G, Kastenmuller W, Ljapoci R, Sutter G, Drexler I (2007) Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J Virol 81:11925–11936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7:182–188

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97:705–716

    Article  CAS  PubMed  Google Scholar 

  • Gómez E, Zoth SC, Berinstein A (2009) Plant-based vaccines for potential human application: a review. Hum Vaccine 5:738–744

    Article  Google Scholar 

  • Grandi G, Nagy E (2012) Finding protective bacterial antigens. In: von Gabain A, Christoph K (eds) Development of novel vaccines. Skills, knowledge and translational technologies. Springer, Wien

    Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  PubMed  Google Scholar 

  • Hefferon KL (2012) Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology 433:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30:e43

    Article  PubMed Central  PubMed  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Howard JA (2005) Commercialization of biopharmaceutical and bioindustrial proteins from plants. Crop Sci 45:468–472

    Article  CAS  Google Scholar 

  • Jenner E (1798) An enquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox. Sampson Low, London

    Google Scholar 

  • Jenner E (1801) The origin of the vaccines inoculation. Shury, London

    Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Korban SS (2002) Trargeting and expression of antigenic proteins in transgenic plants for production of edible oral vaccines. In Vitro Cell Dev Biol Plant 38:231–236

    Article  CAS  Google Scholar 

  • Liljeqvist S, Ståhl S (1999) Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 73:1–33

    Article  CAS  PubMed  Google Scholar 

  • Lugade AA, Kalathil S, Heald JL, Thanavala Y (2010) Transgenic plant-based oral vaccines. Immunol Invest 39:468–482

    Article  CAS  PubMed  Google Scholar 

  • Ma JK-C, Drake PMW, Christou P (2003) Genetic modification: the production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  PubMed  Google Scholar 

  • Magee AM, Kavanagh TA (2002) Plastid genes transcribed by the nucleus-encoded plastid RNA polymerase show increased transcript accumulation in transgenic plants expressing a chloroplast-localized phage T7 RNA polymerase. J Exp Bot 53:2341–2349

    Article  CAS  PubMed  Google Scholar 

  • Mestecky J, Nguyen H, Czerkinsky C, Kiyono H (2008) Oral immunization: an update. Curr Opin Gastroenterol 24:713–719

    Article  PubMed  Google Scholar 

  • Moriel DG, Scarselli M, Serino L, Mora M, Rappuoli R, Masignani V (2008) Genome-based vaccine development: a short cut for the future. Hum Vaccin 4:184–188

    Article  CAS  PubMed  Google Scholar 

  • Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8 + )-cell responses to vaccinia virus. Nat Biotechnol 24:817–819

    Article  CAS  PubMed  Google Scholar 

  • Moutaftsi M, Salek-Ardakani S, Croft M, Peters B, Sidney J, Grey H, Sette A (2009) Correlates of protection efficacy induced by vaccinia virus-specific CD8+ T-cell epitopes in the murine intranasal challenge model. Eur J Immunol 39:717–22

    Google Scholar 

  • Mowat AM, Viney JL (1997) The anatomical basis of intestinal immunity. Immunol Rev 156:145–166

    Article  CAS  PubMed  Google Scholar 

  • Pathi K, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal Behav 8:e24354

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelosi A, Shepherd R, Walmsley AM (2012) Delivery of plant-made vaccines and therapeutics. Biotechnol Adv 30:440–448

    Article  CAS  PubMed  Google Scholar 

  • Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the millennium development goals. Plant Cell Rep 30:789–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    Article  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84

    Article  CAS  PubMed  Google Scholar 

  • Rueckert C, Guzmán CA (2012) Vaccines: from empirical development to rational design. PLoS Pathog 8:e1003001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salyaev RK, Rigano MM, Rekoslavskaya NI (2010) Development of plant-based mucosal vaccines against wide spread infectious diseases. Expert Rev Vaccines 9:937–946

    Article  CAS  PubMed  Google Scholar 

  • Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27(6):811–832

    Article  CAS  PubMed  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2008) Plant biotechnology: the genetic manipulation of plants. Oxford University Press, Oxford, 376 p

    Google Scholar 

  • Soria-Guerra RE, Moreno-Fierros L, Rosales-Mendoza S (2011) Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches. Plant Cell Rep 30:1367–1382

    Article  CAS  PubMed  Google Scholar 

  • Staats HF, Jackson RJ, Marinaro M, Takahashi I, Kiyono H, McGhee JR (1994) Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol 6:572–583

    Article  CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ (1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med 4:607–609

    Article  CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    Article  CAS  PubMed  Google Scholar 

  • Takahashi I, Nochi T, Yuki Y, Kiyono H (2009) New horizon of mucosal immunity and vaccines. Curr Opin Immunol 21:352–358

    Article  CAS  PubMed  Google Scholar 

  • Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen CJ, Mason HS (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci U S A 102:3378–3382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    Article  CAS  PubMed  Google Scholar 

  • Walden R, Schell J (1990) Techniques in plant molecular biology—progress and problems. Eur J Biochem 192:563–576

    Article  CAS  PubMed  Google Scholar 

  • Wycoff KL (2005) Secretory IgA antibodies from plants. Curr Pharm Des 11:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7:313–321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rosales-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Govea-Alonso, D., Cardineau, G., Rosales-Mendoza, S. (2014). Principles of Plant-Based Vaccines. In: Rosales-Mendoza, S. (eds) Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0850-9_1

Download citation

Publish with us

Policies and ethics