Skip to main content

Computational Complexities of Optimization Problems Related to Model-Based Clustering of Networks

  • Chapter
  • First Online:
Optimization in Science and Engineering
  • 1744 Accesses

Abstract

An extremely popular model-based graph partitioning approach that is used for both biological and social networks is the so-called modularity optimization approach originally proposed by Newman and its variations. In this chapter, we review several combinatorial and algebraic methods that have been used in the literature to study the computational complexities of these optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definitions can be easily generalized for directed and weighted graphs; see Sect. 3.5.

  2. 2.

    Each V i is usually called a “cluster”.

  3. 3.

    See [48, part II] for further details of such an approach.

  4. 4.

    See [48, Chap. 26].

References

  1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MATH  Google Scholar 

  3. Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., Westbrooks, K.: A novel method for signal transduction network inference from indirect experimental evidence. J. Comput. Biol. 14(7), 927–949 (2007)

    Article  MathSciNet  Google Scholar 

  4. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 72–80. ACM, New York (2004)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MATH  Google Scholar 

  6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  8. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2007)

    Article  Google Scholar 

  9. Charikar, M., Wirth, A.: Maximizing quadratic programs: extending Grothendieck’s inequality. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 54–68 (2004)

    Google Scholar 

  10. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, Boston, pp. 524–533 (2003)

    Google Scholar 

  11. Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006)

    Article  MATH  Google Scholar 

  12. Coleman, T., Saunderson, J., Wirth, A.: Local-search 2-approximation for 2-correlation-clustering. In: Proceedings of the 16th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, Springer Verlag, vol. 5193, pp. 308–319 (2008)

    Google Scholar 

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  14. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 2005(9)

    Google Scholar 

  15. DasGupta, B., Desai, D.: Complexity of Newman’s community finding approach for social networks. J. Comput. Syst. Sci. 79(1), 50–67 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. DasGupta, B., Andres Enciso, G., Sontag, E., Zhang, Y.: Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. Biosystems 90(1), 161–178 (2007)

    Article  Google Scholar 

  17. Flake, G.W., Lawrence, S.R., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. IEEE Comput. 35, 66–71 (2002)

    Article  Google Scholar 

  18. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, New York (1979)

    MATH  Google Scholar 

  20. Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Ooi, C.E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C.A., Finley, R.L., White, K.P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R.A., McKenna, M.P., Chant, J., Rothberg, J.M.: A protein interaction map of Drosophila melanogaster. Science 302(5651), 1727–1736 (2003)

    Google Scholar 

  21. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guimera, R., Sales-Pardo, M., Amaral, L.A.N.: Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3, 63–69 (2007)

    Article  Google Scholar 

  23. Hann, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  24. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  25. Kannan, R., Tetali, P., Vempala, S.: Markov-chain algorithms for generating bipartite graphs and tournaments. Random Struct. Algorithms 14, 293–308 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Karrer, B., Newman, M.E.J.: Random graph models for directed acyclic networks. Phys. Rev. E 80, 046110 (2009)

    Article  Google Scholar 

  28. Kefeng, D., Ping, Z., Huisha, Z.: Graph separation of 4-regular graphs is NP-complete. J. Math. Study 32(2), 137–145 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Kelley, J.E., Jr.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  Google Scholar 

  30. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, pp. 57–65 (2000)

    Google Scholar 

  31. Lee, T.I., Rinaldi, M.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.-B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Google Scholar 

  32. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100, 118703 (2008)

    Article  Google Scholar 

  33. Li, S., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.-O., Han, J.-D.J., Chesneau, A., Hao, T., Goldberg, D.S., Li, N., Martinez, M., Rual, J.-F., Lamesch, P., Xu, L., Tewari, M., Wong, S.L., Zhang, L.V., Berriz, G.F., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H.W., Elewa, A., Baumgartner, B., Rose, D.J., Yu, H., Bosak, S., Sequerra, R., Fraser, A., Mango, S.E., Saxton, W.M., Strome, S., van den Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K.C., Harper, J.W., Cusick, M.E., Roth, F.P., Hill, D.E., Vidal, M.: A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004)

    Google Scholar 

  34. Maayan, A., Jenkins, S.L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B., Eungdamrong, N.J., Weng, G., Ram, P.T., Rice, J.J., Kershenbaum, A., Stolovitzky, G.A., Blitzer, R.D., Iyengar, R.: Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309(5737), 1078–1083 (2005)

    Article  Google Scholar 

  35. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  37. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006)

    Article  Google Scholar 

  38. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  39. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118–026134 (2001)

    Article  Google Scholar 

  40. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9, 141–160 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pothen, A., Simon, D.H., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  42. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    Article  Google Scholar 

  43. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.-L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  44. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)

    Article  Google Scholar 

  45. Simon, H.D., Teng, S.H.: How good is recursive bisection. SIAM J. Sci. Comput. 18, 1436–1445 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, pp. 526–527 (2004)

    Google Scholar 

  47. Trevisan, L.: Max cut and the smallest eigenvalue. In: Proceedings of the 41st ACM Symposium on Theory of Computing, New York, pp. 263–272 (2009)

    Google Scholar 

  48. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

Download references

Acknowledgments

The author was supported by NSF grant IIS-1160995.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar DasGupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

DasGupta, B. (2014). Computational Complexities of Optimization Problems Related to Model-Based Clustering of Networks. In: Rassias, T., Floudas, C., Butenko, S. (eds) Optimization in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0808-0_5

Download citation

Publish with us

Policies and ethics