Skip to main content

On the Discretization of Pseudomonotone Variational Inequalities with an Application to the Numerical Solution of the Nonmonotone Delamination Problem

  • Chapter
  • First Online:
Optimization in Science and Engineering

Abstract

In this paper we present an approximation procedure for pseudomonotone variational inequalities in general reflexive Banach spaces. Under an appropriate coerciveness condition we obtain a convergence result for this method. Then we show that hemivariational inequalities in linear elasticity are pseudomonotone. Thus our approximation method can be applied to nonmonotone contact. Here we give an application to a delamination problem in 2D. We sketch how regularization of nonsmooth functionals together with finite element approximation lead to an efficient numerical solution method for these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, Robert A., Fournier, John J. F.: Sobolev spaces, Elsevier Ltd. (2003)

    Google Scholar 

  2. Alt, H.W.: Lineare Funktional-Analysis. Springer, Berlin (1999)

    Book  Google Scholar 

  3. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (2008)

    Google Scholar 

  4. Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities. Appl. Math. 50(1), 1–25 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Contact problems with nonmonotone friction: discretization and numerical realization. Comput. Mech. 40, 157–165 (2007)

    Article  MATH  Google Scholar 

  6. Bertsekas, D.P.: Nondifferentiable optimization via approximation. Math. Program. Stud. vol. 3, pp. 1–25 (1975)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H.: Equations et inequations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18, 115–175 (1968)

    Article  MATH  Google Scholar 

  8. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, New York (2007)

    MATH  Google Scholar 

  9. Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput. 67, 519–540 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis, vol. 2, Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  11. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. 1 and 2. Springer, New York (2003)

    Google Scholar 

  13. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, Vol. I: Unilateral Analysis and Unilateral Mechanics, Vol. II: Unilateral problems. Kluwer, Boston (2003)

    Book  Google Scholar 

  14. Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. Ph.D. thesis, Universität Mannheim (1978)

    Google Scholar 

  15. Gwinner, J.: A note on pseudomonotone functions, regularization, and relaxed coerciveness. J. Nonlinear Anal. Theory Methods Appl. 30(7), 4217–4227 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Methods for Hemivariational Inequalities. Kluwer Academic, Boston (1999)

    Book  MATH  Google Scholar 

  17. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  18. Naniewicz, Z., Panagiotopoulos, P. D.: Mathematical Theory of Hemivariational Inequalities and Applications. Dekker, New York (1995)

    Google Scholar 

  19. Ovcharova, N.: Regularization Methods and Finite Element Approximation of Hemivariational Inequalities with Applications to Nonmonotone Contact Problems. Ph.D. thesis, Universität der Bundeswehr München, Cuvillier Verlag, Göttingen (2012)

    Google Scholar 

  20. Ovcharova, N., Gwinner, J.: On the regularization method in nondifferentiable optimization applied to hemivariational inequalities. In: Constructive Nonsmooth Analysis and Related Topics. Springer Optimization and Its Application, vol. 87, pp. 59–70. Springer, New York (2014)

    Google Scholar 

  21. Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  22. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Application. Convex and Nonconvex Energy Functions. Birkhäuser, Basel (1998)

    Google Scholar 

  23. Sofonea, M., Matei, A.: Variational Inequalities with Applications. Springer, New York (2009)

    MATH  Google Scholar 

  24. Zang, I.: A smoothing-out technique for min-max optimization. Math. Program. 19, 61–77 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Ovcharova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ovcharova, N., Gwinner, J. (2014). On the Discretization of Pseudomonotone Variational Inequalities with an Application to the Numerical Solution of the Nonmonotone Delamination Problem. In: Rassias, T., Floudas, C., Butenko, S. (eds) Optimization in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0808-0_20

Download citation

Publish with us

Policies and ethics