Skip to main content

Stem Cells and the Ocular Lens: Implications for Cataract Research and Therapy

  • Chapter
  • First Online:
Regenerative Biology of the Eye

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

A transparent and pliable lens is critical for good quality vision, effective motor and social development, life-long education and employment, and high quality of life. As individuals live beyond the age of 40 they experience progressive lens hardening, called presbyopia, that results in impaired vision due to a reduced ability to accommodate (i.e. to change focus between near and far objects). Due to its age of onset most people, at least in the developed world, will live roughly half their lives dealing with the vision-impairing consequences of presbyopia. Additionally, tens of millions of people have low vision or blindness due to the formation of lenticular opacities, called cataracts, that reduce lens transparency. Due to population ageing, age-related cataracts are becoming an increasing problem worldwide. Thus presbyopia and age-related cataracts are causing, and will increasingly cause, large social and economic hardship across the globe. While decades of research have provided some understanding of the molecular mechanisms that underpin these blinding conditions, new research and clinical therapies are needed to better treat these extensive, costly and life-altering conditions. Advances in stem cell research and technology provide a real opportunity to identify and develop these much-needed new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ARN:

Age-related nuclear

BMP:

Bone morphogenic protein

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

IGF:

Insulin-like growth factor

IOL:

Intraocular lens

iPSC:

Induced pluripotent stem cell

Nd:YAG:

Neodymium-doped yttrium aluminium garnet

PCO:

Posterior capsule opacification

PSC:

Pluripotent stem cell

References

  1. Mann I (1964) The development of the human eye. Grune & Stratton, Inc., New York

    Google Scholar 

  2. Glasser A (2008) Restoration of accommodation: surgical options for correction of presbyopia. Clin Exp Optom 91(3):279–295

    PubMed Central  PubMed  Google Scholar 

  3. von Helmholtz H (1924) Mechanism of accommodation. In: Southall J (ed) Helmholtz’s treatise on physiological optics. Optical Society of America, New York, pp 143–172

    Google Scholar 

  4. Truscott RJ (2005) Age-related nuclear cataract-oxidation is the key. Exp Eye Res 80(5):709–725

    CAS  PubMed  Google Scholar 

  5. Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366(1568):1278–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Truscott RJ (2009) Presbyopia. Emerging from a blur towards an understanding of the molecular basis for this most common eye condition. Exp Eye Res 88(2):241–247

    CAS  PubMed  Google Scholar 

  7. McGinty SJ, Truscott RJ (2006) Presbyopia: the first stage of nuclear cataract? Ophthalmic Res 38(3):137–148

    CAS  PubMed  Google Scholar 

  8. National Advisory Eye Council (1983) Vision research: a national plan 1983-1987. US Department of Health and Human Services, National Institutes of Health, Bethesda, MD

    Google Scholar 

  9. Access Economics Pty Limited (2004) Eye Research Australia. Clear insight. The economic impact and cost of vision loss in Australia, Eye Research Australia, 32 Gisborne St, East Melbourne, Victoria, Australia, 3002

    Google Scholar 

  10. Kupfer C (1985) Bowman lecture. The conquest of cataract: a global challenge. Trans Ophthalmol Soc U K 104(1):1–10

    PubMed  Google Scholar 

  11. Congdon NG (2001) Prevention strategies for age related cataract: present limitations and future possibilities. Br J Ophthalmol 85(5):516–520

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  PubMed  Google Scholar 

  13. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404

    CAS  PubMed  Google Scholar 

  14. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    CAS  PubMed  Google Scholar 

  15. Holden BA et al (2008) Global vision impairment due to uncorrected presbyopia. Arch Ophthalmol 126(12):1731–1739

    PubMed  Google Scholar 

  16. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96(5):614–618

    PubMed  Google Scholar 

  17. Hyman L, Patel I (2012) Chapter 11. Epidemiology of refractive errors and presbyopia. In: Johnson G, Minassian D, Weale R, West S (eds) The epidemiology of eye disease, 3rd edn. Imperial College Press, London, pp 197–226

    Google Scholar 

  18. Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ (2000) The ageing lens. Ophthalmologica 214(1):86–104

    CAS  PubMed  Google Scholar 

  19. Glasser A, Campbell MC (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vision Res 38(2):209–229

    CAS  PubMed  Google Scholar 

  20. Truscott RJ (2003) Human cataract: the mechanisms responsible; light and butterfly eyes. Int J Biochem Cell Biol 35(11):1500–1504

    CAS  PubMed  Google Scholar 

  21. Schachar RA (2006) The mechanism of accommodation and presbyopia. Int Ophthalmol Clin 46(3):39–61

    PubMed  Google Scholar 

  22. Strenk SA, Strenk LM, Koretz JF (2005) The mechanism of presbyopia. Prog Retin Eye Res 24(3):379–393

    PubMed  Google Scholar 

  23. Charman WN (2014) Developments in the correction of presbyopia I: spectacle and contact lenses. Ophthalmic Physiol Opt 34(1):8–29

    PubMed  Google Scholar 

  24. Evans BJ (2007) Monovision: a review. Ophthalmic Physiol Opt 27(5):417–439

    PubMed  Google Scholar 

  25. Morgan PB, Efron N, Woods CA, International Contact Lens Prescribing Survey Consortium (2011) An international survey of contact lens prescribing for presbyopia. Clin Exp Optom 94(1):87–92

    PubMed  Google Scholar 

  26. Bennett ES (2008) Contact lens correction of presbyopia. Clin Exp Optom 91(3):265–278

    PubMed  Google Scholar 

  27. Kook D et al (2013) Advances in lens implant technology. F1000 Med Rep 5:3, Epub 2013 Feb 1

    PubMed Central  PubMed  Google Scholar 

  28. Waring GO IV, Berry DE (2013) Advances in the surgical correction of presbyopia. Int Ophthalmol Clin 53(1):129–152

    PubMed  Google Scholar 

  29. Torricelli AA, Junior JB, Santhiago MR, Bechara SJ (2012) Surgical management of presbyopia. Clin Ophthalmol 6:1459–1466

    PubMed Central  PubMed  Google Scholar 

  30. Schachar RA (2001) Theoretical basis for the scleral expansion band procedure for surgical reversal of presbyopia [SRP]. Compr Ther 27(1):39–46

    CAS  PubMed  Google Scholar 

  31. Mathews S (1999) Scleral expansion surgery does not restore accommodation in human presbyopia. Ophthalmology 106(5):873–877

    CAS  PubMed  Google Scholar 

  32. Ostrin LA, Kasthurirangan S, Glasser A (2004) Evaluation of a satisfied bilateral scleral expansion band patient. J Cataract Refract Surg 30(7):1445–1453

    PubMed  Google Scholar 

  33. Malecaze FJ, Gazagne CS, Tarroux MC, Gorrand JM (2001) Scleral expansion bands for presbyopia. Ophthalmology 108(12):2165–2171

    CAS  PubMed  Google Scholar 

  34. Hamilton DR, Davidorf JM, Maloney RK (2002) Anterior ciliary sclerotomy for treatment of presbyopia: a prospective controlled study. Ophthalmology 109(11):1970–1976, discussion 1976–7

    PubMed  Google Scholar 

  35. Gower E, West S (2012) Chapter 10. Age-related cataract. In: Johnson G, Minassian D, Weale R, West S (eds) The epidemiology of eye disease, 3rd edn. Imperial College Press, London, pp 177–196

    Google Scholar 

  36. Rochtchina E et al (2003) Projected prevalence of age-related cataract and cataract surgery in Australia for the years 2001 and 2021: pooled data from two population-based surveys. Clin Experiment Ophthalmol 31(3):233–236

    PubMed  Google Scholar 

  37. World Health Organisation Fact Sheet No 135: Population Ageing-A Public Health Challenge - Revised September 1998 (WHO, 1998, 4 p.). Geneva, Switzerland

    Google Scholar 

  38. McGavin D (1999) The global initiative for the elimination of avoidable blindness—vision 2020: the right to sight. Community Eye Health 12(30):32

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Michael R, Barraquer RI, Willekens B, van Marle J, Vrensen GF (2008) Morphology of age-related cuneiform cortical cataracts: the case for mechanical stress. Vision Res 48(4):626–634

    PubMed  Google Scholar 

  40. Gilliland KO, Freel CD, Lane CW, Fowler WC, Costello MJ (2001) Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts. Mol Vis 7:120–130

    CAS  PubMed  Google Scholar 

  41. Costello MJ, Johnsen S, Gilliland KO, Freel CD, Fowler WC (2007) Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory. Invest Ophthalmol Vis Sci 48(1):303–312

    PubMed  Google Scholar 

  42. Costello MJ et al (2012) Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts. Exp Eye Res 101:72–81

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Beebe DC, Holekamp NM, Shui YB (2010) Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res 44(3):155–165

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hejtmancik JF, Kantorow M (2004) Molecular genetics of age-related cataract. Exp Eye Res 79(1):3–9

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Truscott RJ (2000) Age-related nuclear cataract: a lens transport problem. Ophthalmic Res 32(5):185–194

    CAS  PubMed  Google Scholar 

  46. Wormstone IM, Wang L, Liu CS (2009) Posterior capsule opacification. Exp Eye Res 88(2):257–269

    CAS  PubMed  Google Scholar 

  47. Ravindran RD et al (2011) Inverse association of vitamin C with cataract in older people in India. Ophthalmology 118(10):1958–1965.e2

    PubMed Central  PubMed  Google Scholar 

  48. Christen WG, Liu S, Glynn RJ, Gaziano JM, Buring JE (2008) Dietary carotenoids, vitamins C and E, and risk of cataract in women: a prospective study. Arch Ophthalmol 126(1):102–109

    PubMed Central  PubMed  Google Scholar 

  49. Mares JA et al (2010) Healthy diets and the subsequent prevalence of nuclear cataract in women. Arch Ophthalmol 128(6):738–749

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Christen W, Glynn R, Sperduto R, Chew E, Buring J (2004) Age-related cataract in a randomized trial of beta-carotene in women. Ophthalmic Epidemiol 11(5):401–412

    PubMed  Google Scholar 

  51. Christen WG, Glynn RJ, Chew EY, Buring JE (2008) Vitamin E and age-related cataract in a randomized trial of women. Ophthalmology 115(5):822–829.e1

    PubMed  Google Scholar 

  52. Christen WG et al (2010) Age-related cataract in a randomized trial of vitamins E and C in men. Arch Ophthalmol 128(11):1397–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Gritz DC et al (2006) The Antioxidants in Prevention of Cataracts Study: effects of antioxidant supplements on cataract progression in South India. Br J Ophthalmol 90(7):847–851

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Taylor HR, Vu HT, Keeffe JE (2006) Visual acuity thresholds for cataract surgery and the changing Australian population. Arch Ophthalmol 124(12):1750–1753

    PubMed  Google Scholar 

  55. Taylor HR, Pezzullo ML, Keeffe JE (2006) The economic impact and cost of visual impairment in Australia. Br J Ophthalmol 90(3):272–275

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Taylor HR et al (2005) Vision loss in Australia. Med J Aust 182(11):565–568

    PubMed  Google Scholar 

  57. Rein DB et al (2006) The economic burden of major adult visual disorders in the United States. Arch Ophthalmol 124(12):1754–1760

    PubMed  Google Scholar 

  58. Gimbel HV, Dardzhikova AA (2011) Consequences of waiting for cataract surgery. Curr Opin Ophthalmol 22(1):28–30

    PubMed  Google Scholar 

  59. Coombes A, Gantry D (2003) Fundamentals of clinical ophthalmology: cataract surgery. In: Lightman S (ed). BMJ Books, London, p 233

    Google Scholar 

  60. Lichtinger A, Rootman DS (2012) Intraocular lenses for presbyopia correction: past, present, and future. Curr Opin Ophthalmol 23(1):40–46

    PubMed  Google Scholar 

  61. Santaella R, Afshari N (2010) Presbyopia-correcting intraocular lenses: ‘one lens does not fit all’. Curr Opin Ophthalmol 21(1):1–3

    PubMed  Google Scholar 

  62. Buznego C, Trattler WB (2009) Presbyopia-correcting intraocular lenses. Curr Opin Ophthalmol 20(1):13–18

    PubMed  Google Scholar 

  63. Olson RJ (2008) Presbyopia correcting intraocular lenses: what do I do? Am J Ophthalmol 145(4):593–594

    PubMed  Google Scholar 

  64. Pepose JS (2008) Maximizing satisfaction with presbyopia-correcting intraocular lenses: the missing links. Am J Ophthalmol 146(5):641–648

    PubMed  Google Scholar 

  65. Awasthi N, Guo S, Wagner BJ (2009) Posterior capsular opacification: a problem reduced but not yet eradicated. Arch Ophthalmol 127(4):555–562

    PubMed  Google Scholar 

  66. Rabsilber TM, Limberger IJ, Reuland AJ, Holzer MP, Auffarth GU (2007) Long-term results of sealed capsule irrigation using distilled water to prevent posterior capsule opacification: a prospective clinical randomised trial. Br J Ophthalmol 91(7):912–915

    PubMed Central  PubMed  Google Scholar 

  67. Steinberg EP et al (1993) The content and cost of cataract surgery. Arch Ophthalmol 111(8):1041–1049

    CAS  PubMed  Google Scholar 

  68. Lundqvist B, Monestam E (2010) Ten-year longitudinal visual function and nd: YAG laser capsulotomy rates in patients less than 65 years at cataract surgery. Am J Ophthalmol 149(2):238–244.e1

    PubMed  Google Scholar 

  69. Vock L et al (2009) Posterior capsule opacification and neodymium: YAG laser capsulotomy rates with a round-edged silicone and a sharp-edged hydrophobic acrylic intraocular lens 10 years after surgery. J Cataract Refract Surg 35(3):459–465

    PubMed  Google Scholar 

  70. Olsen T, Jeppesen P (2012) The incidence of retinal detachment after cataract surgery. Open Ophthalmol J 6:79–82

    PubMed Central  PubMed  Google Scholar 

  71. Lois N, Wong D (2003) Pseudophakic retinal detachment. Surv Ophthalmol 48(5):467–487

    PubMed  Google Scholar 

  72. Wride MA (2011) Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci 366(1568):1219–1233

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88(2):151–164

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kuszak JR, Zoltoski RK, Tiedemann CE (2004) Development of lens sutures. Int J Dev Biol 48(8–9):889–902

    PubMed  Google Scholar 

  75. Taylor VL et al (1996) Morphology of the normal human lens. Invest Ophthalmol Vis Sci 37(7):1396–1410

    CAS  PubMed  Google Scholar 

  76. Kuszak JR, Zoltoski RK, Sivertson C (2004) Fibre cell organization in crystalline lenses. Exp Eye Res 78(3):673–687

    CAS  PubMed  Google Scholar 

  77. Pierscionek BK, Regini JW (2012) The gradient index lens of the eye: an opto-biological synchrony. Prog Retin Eye Res 31(4):332–349

    PubMed  Google Scholar 

  78. Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J (2008) Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One 3(1):e1529

    PubMed Central  PubMed  Google Scholar 

  79. Dahm R, van Marle J, Quinlan RA, Prescott AR, Vrensen GF (2011) Homeostasis in the vertebrate lens: mechanisms of solute exchange. Philos Trans R Soc Lond B Biol Sci 366(1568):1265–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Hanna C, O’Brien JE (1961) Cell production and migration in the epithelial layer of the lens. Arch Ophthalmol 66:103–107

    CAS  PubMed  Google Scholar 

  81. Persons BJ, Modak SP (1970) The pattern of DNA synthesis in the lens epithelium and the annular pad during development and growth of the chick lens. Exp Eye Res 9(1):144–151

    CAS  PubMed  Google Scholar 

  82. Rafferty NS, Rafferty KA Jr (1981) Cell population kinetics of the mouse lens epithelium. J Cell Physiol 107(3):309–315

    CAS  PubMed  Google Scholar 

  83. Zhou M, Leiberman J, Xu J, Lavker RM (2006) A hierarchy of proliferative cells exists in mouse lens epithelium: implications for lens maintenance. Invest Ophthalmol Vis Sci 47(7):2997–3003

    PubMed Central  PubMed  Google Scholar 

  84. Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41(2):83–91

    PubMed  Google Scholar 

  85. Gwon A (2006) Lens regeneration in mammals: a review. Surv Ophthalmol 51(1):51–62

    PubMed  Google Scholar 

  86. Coulombre JL, Coulombre AJ (1963) Lens development: fiber elongation and lens orientation. Science 142(3598):1489–1490

    CAS  PubMed  Google Scholar 

  87. Yamamoto Y (1976) Growth of lens and ocular environment: role of neural retina in the growth of mouse lens as revealed by an implantation experiment. Dev Growth Differ 18(3):273–278

    Google Scholar 

  88. Kappelhof JP, Vrensen GF, de Jong PT, Pameyer J, Willekens BL (1987) The ring of Soemmerring in man: an ultrastructural study. Graefes Arch Clin Exp Ophthalmol 225(1):77–83

    CAS  PubMed  Google Scholar 

  89. Kappelhof JP, Vrensen GF (1992) The pathology of after-cataract. A minireview. Acta Ophthalmol Suppl 205:13–24

    PubMed  Google Scholar 

  90. Piatigorsky J (1973) Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells. Dev Biol 30(1):214–216

    CAS  PubMed  Google Scholar 

  91. Bassas L, Zelenka PS, Serrano J, de Pablo F (1987) Insulin and IGF receptors are developmentally regulated in the chick embryo eye lens. Exp Cell Res 168(2):561–566

    CAS  PubMed  Google Scholar 

  92. Beebe DC et al (1987) Lentropin, a protein that controls lens fiber formation, is related functionally and immunologically to the insulin-like growth factors. Proc Natl Acad Sci U S A 84(8):2327–2330

    CAS  PubMed Central  PubMed  Google Scholar 

  93. McAvoy JW (1980) Beta- and gamma-crystallin synthesis in rat lens epithelium explanted with neural retinal. Differentiation 17(2):85–91

    CAS  PubMed  Google Scholar 

  94. Walton J, McAvoy J (1984) Sequential structural response of lens epithelium to retina-conditioned medium. Exp Eye Res 39(2):217–229

    CAS  PubMed  Google Scholar 

  95. Campbell MT, McAvoy JW (1984) Onset of fibre differentiation in cultured rat lens epithelium under the influence of neural retina-conditioned medium. Exp Eye Res 39(1):83–94

    CAS  PubMed  Google Scholar 

  96. Chamberlain CG, McAvoy JW (1987) Evidence that fibroblast growth factor promotes lens fibre differentiation. Curr Eye Res 6(9):1165–1169

    CAS  PubMed  Google Scholar 

  97. Chamberlain CG, McAvoy JW (1989) Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors 1(2):125–134

    CAS  PubMed  Google Scholar 

  98. Lovicu FJ, Overbeek PA (1998) Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125(17):3365–3377

    CAS  PubMed  Google Scholar 

  99. Stolen CM, Jackson MW, Griep AE (1997) Overexpression of FGF-2 modulates fiber cell differentiation and survival in the mouse lens. Development 124(20):4009–4017

    CAS  PubMed  Google Scholar 

  100. Robinson ML et al (1998) Disregulation of ocular morphogenesis by lens-specific expression of FGF-3/int-2 in transgenic mice. Dev Biol 198(1):13–31

    CAS  PubMed  Google Scholar 

  101. de Iongh RU, Lovicu FJ, Hanneken A, Baird A, McAvoy JW (1996) FGF receptor-1 (flg) expression is correlated with fibre differentiation during rat lens morphogenesis and growth. Dev Dyn 206(4):412–426

    PubMed  Google Scholar 

  102. de Iongh RU, Lovicu FJ, Chamberlain CG, McAvoy JW (1997) Differential expression of fibroblast growth factor receptors during rat lens morphogenesis and growth. Invest Ophthalmol Vis Sci 38(9):1688–1699

    PubMed  Google Scholar 

  103. Zhao H et al (2008) Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol 318(2):276–288

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Schulz MW, Chamberlain CG, de Iongh RU, McAvoy JW (1993) Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development 118(1):117–126

    CAS  PubMed  Google Scholar 

  105. Lovicu FJ, McAvoy JW (2005) Growth factor regulation of lens development. Dev Biol 280(1):1–14

    CAS  PubMed  Google Scholar 

  106. Wu W et al (2014) A gradient of matrix-bound FGF-2 and perlecan is available to lens epithelial cells. Exp Eye Res 120:10–14

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Chamberlain C, McAvoy J (1997) Fiber differentiation and polarity in the mammalian lens: a key role for FGF. Prog Retin Eye Res 16:443–478

    CAS  Google Scholar 

  108. O’Connor MD, McAvoy JW (2007) In vitro generation of functional lens-like structures with relevance to age-related nuclear cataract. Invest Ophthalmol Vis Sci 48(3):1245–1252

    PubMed  Google Scholar 

  109. O’Connor MD, Wederell ED, de Iongh R, Lovicu FJ, McAvoy JW (2008) Generation of transparency and cellular organization in lens explants. Exp Eye Res 86(5):734–745

    PubMed  Google Scholar 

  110. Chamberlain CG, McAvoy JW, Richardson NA (1991) The effects of insulin and basic fibroblast growth factor on fibre differentiation in rat lens epithelial explants. Growth Factors 4(3):183–188

    CAS  PubMed  Google Scholar 

  111. Lovicu FJ, McAvoy JW, de Iongh RU (2011) Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond B Biol Sci 366(1568):1204–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kerr CL, Huang J, Williams T, West-Mays JA (2012) Activation of the hedgehog signaling pathway in the developing lens stimulates ectopic FoxE3 expression and disruption in fiber cell differentiation. Invest Ophthalmol Vis Sci 53(7):3316–3330

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Tsonis PA, Del Rio-Tsonis K (2004) Lens and retina regeneration: transdifferentiation, stem cells and clinical applications. Exp Eye Res 78(2):161–172

    CAS  PubMed  Google Scholar 

  114. Henry JJ, Tsonis PA (2010) Molecular and cellular aspects of amphibian lens regeneration. Prog Retin Eye Res 29(6):543–555

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Hayashi T, Mizuno N, Ueda Y, Okamoto M, Kondoh H (2004) FGF2 triggers iris-derived lens regeneration in newt eye. Mech Dev 121(6):519–526

    CAS  PubMed  Google Scholar 

  116. Del Rio-Tsonis K, Trombley MT, McMahon G, Tsonis PA (1998) Regulation of lens regeneration by fibroblast growth factor receptor 1. Dev Dyn 213(1):140–146

    CAS  PubMed  Google Scholar 

  117. Maki N et al (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238(6):1613–1616

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Greiling TM, Aose M, Clark JI (2010) Cell fate and differentiation of the developing ocular lens. Invest Ophthalmol Vis Sci 51(3):1540–1546

    PubMed Central  PubMed  Google Scholar 

  119. Dahm R, Schonthaler HB, Soehn AS, van Marle J, Vrensen GF (2007) Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 85(1):74–89

    CAS  PubMed  Google Scholar 

  120. Schmitt EA, Dowling JE (1994) Early eye morphogenesis in the zebrafish, brachydanio rerio. J Comp Neurol 344(4):532–542

    CAS  PubMed  Google Scholar 

  121. Greiling TM, Clark JI (2009) Early lens development in the zebrafish: a three-dimensional time-lapse analysis. Dev Dyn 238(9):2254–2265

    PubMed  Google Scholar 

  122. McDevitt DS, Brahma SK (1973) Ontogeny and localization of the crystallins during embryonic lens development in Xenopus laevis. J Exp Zool 186(2):127–140

    CAS  PubMed  Google Scholar 

  123. Tsonis PA (2008) Animal models in eye research. Academic Press, 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

    Google Scholar 

  124. Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    CAS  PubMed  Google Scholar 

  125. Piatigorsky J (1993) Puzzle of crystallin diversity in eye lenses. Dev Dyn 196(4):267–272

    CAS  PubMed  Google Scholar 

  126. Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131(22):5515–5525

    CAS  PubMed  Google Scholar 

  127. West PR, Weir AM, Smith AM, Donley EL, Cezar GG (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247(1):18–27

    CAS  PubMed  Google Scholar 

  128. Hirano M et al (2003) Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn 228(4):664–671

    PubMed  Google Scholar 

  129. Yang C et al (2010) Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 24(9):3274–3283

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Mengarelli I, Barberi T (2013) Derivation of multiple cranial tissues and isolation of lens epithelium-like cells from human embryonic stem cells. Stem Cells Transl Med 2(2):94–106

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Gunhaga L (2011) The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos Trans R Soc Lond B Biol Sci 366(1568):1193–1203

    PubMed Central  PubMed  Google Scholar 

  132. Zhang H et al (2007) Arsenic trioxide initiates ER stress responses, perturbs calcium signalling and promotes apoptosis in human lens epithelial cells. Exp Eye Res 85(6):825–835

    CAS  PubMed  Google Scholar 

  133. Liu Y, Wong T, Mehta J (2013) Intraocular lens as a drug delivery reservoir. Curr Opin Ophthalmol 24(1):53–59

    PubMed  Google Scholar 

  134. Sampath S et al (2012) The use of rat lens explant cultures to study the mechanism of drug-induced cataractogenesis. Toxicol Sci 126(1):128–139

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murphy, P., O’Connor, M.D. (2014). Stem Cells and the Ocular Lens: Implications for Cataract Research and Therapy. In: Pébay, A. (eds) Regenerative Biology of the Eye. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0787-8_9

Download citation

Publish with us

Policies and ethics