Skip to main content

Bionic Eyes: Vision Restoration Through Electronic or Photovoltaic Stimulation

  • Chapter
  • First Online:
Regenerative Biology of the Eye

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1147 Accesses

Abstract

Recent advances in the fields of medical bionics and micro-technology have enabled rapid progress in the field of visual prostheses. Once believed to be the realm of science fiction, these photovoltaic and electronic devices are showing efficacy in restoring rudimentary vision to people who are profoundly vision impaired.

Visual prostheses offer hope to many people who have severe vision loss or blindness, but the technology still is in its infancy. This chapter will outline the history, current progress and future potentials for visual prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADLs:

Activities of daily living

AMD:

Age-related macular degeneration

ASR:

Artificial silicon retina

BaLM:

Basic assessment of light and motion

BDNF:

Brain-derived neurotrophic factors

BVA:

Bionic vision Australia

LGN:

Lateral geniculate nucleus

QoL:

Quality of life

RCS:

Royal College Surgeon

RP:

Retinitis pigmentosa

References

  1. Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332

    PubMed  Google Scholar 

  2. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97(3):357–365

    CAS  PubMed  Google Scholar 

  3. Taylor HR et al (2005) Vision loss in Australia. Med J Aust 182(11):565–568

    PubMed  Google Scholar 

  4. Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102(10):1450–1460

    CAS  PubMed  Google Scholar 

  5. Hossain P, Seetho IW, Browning AC, Amoaku WM (2005) Artificial means for restoring vision. BMJ 330(7481):30–33

    PubMed Central  PubMed  Google Scholar 

  6. Foerster O (1929) Beitraege zur Pathophysiologie der Sehbahn und der Sehsphaere. J Psychol Neurol 39:435–463

    Google Scholar 

  7. Krause F, Schum H (1931) Neue deutsche Chirurgie. Enke, Stuttgart

    Google Scholar 

  8. Margalit E et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356

    PubMed  Google Scholar 

  9. Tassicker GE (1956) Preliminary report on a retinal stimulator. Br J Physiol Opt 13(2):102–105

    CAS  PubMed  Google Scholar 

  10. Brindley GS (1965) The number of information channels needed for efficient reading. J Physiol 177:44

    Google Scholar 

  11. Sterling TD, Vaughn HGJ (1971) Feasability of electrocortical prosthesis. In: Sterlin TD, Bering EA, Pollack SV, Vaughn HG (eds) Visual prosthesis: the interdisciplinary dialogue. Academic, New York, pp 1–17

    Google Scholar 

  12. Brindley GS (1972) The variability of the human striate cortex. J Physiol 225(2):1P–3P

    CAS  PubMed  Google Scholar 

  13. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196(2):479–493

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243(2):553–576

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Uematsu S, Chapanis N, Gucer G, Konigsmark B, Walker AE (1974) Electrical stimulation of the cerebral visual system in man. Confin Neurol 36(2):113–124

    CAS  PubMed  Google Scholar 

  16. Bradley DC et al (2005) Visuotopic mapping through a multichannel stimulating implant in primate V1. J Neurophysiol 93(3):1659–1670

    CAS  PubMed  Google Scholar 

  17. Lane FJ, Huyck MH, Troyk P (2011) Looking ahead: planning for the first human intracortical visual prosthesis by using pilot data from focus groups of potential users. Disabil Rehabil Assist Technol 6(2):139–147

    PubMed  Google Scholar 

  18. Srivastava NR, Troyk PR (2006) Some solutions to technical hurdles for developing a practical intracortical visual prosthesis device. Conf Proc IEEE Eng Med Biol Soc 1:2936–2939

    CAS  PubMed  Google Scholar 

  19. Troyk P et al (2003) A model for intracortical visual prosthesis research. Artif Organs 27(11):1005–1015

    PubMed  Google Scholar 

  20. Troyk PR, Rush AD (2009) Inductive link design for miniature implants. Conf Proc IEEE Eng Med Biol Soc 2009:204–209

    PubMed  Google Scholar 

  21. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39(15):2577–2587

    CAS  PubMed  Google Scholar 

  22. Machemer R, Buettner H, Norton EW, Parel JM (1971) Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 75(4):813–820

    CAS  PubMed  Google Scholar 

  23. Machemer R, Buettner H, Parel JM (1972) Vitrectomy, a pars plana approach. Instrumentation. Mod Probl Ophthalmol 10:172–177

    CAS  PubMed  Google Scholar 

  24. Machemer R, Norton EW (1972) Vitrectomy, a pars plana approach. II. Clinical experience. Mod Probl Ophthalmol 10:178–185

    CAS  PubMed  Google Scholar 

  25. Machemer R, Parel JM, Norton EW (1972) Vitrectomy: a pars plana approach. Technical improvements and further results. Trans Am Acad Ophthalmol Otolaryngol 76(2):462–466

    CAS  PubMed  Google Scholar 

  26. Zrenner E et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278(1711):1489–1497

    PubMed Central  PubMed  Google Scholar 

  27. Ahuja AK et al (2010) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95(4):539–543

    PubMed Central  PubMed  Google Scholar 

  28. Dagnelie G (2008) Psychophysical evaluation for visual prosthesis. Annu Rev Biomed Eng 10:339–368

    CAS  PubMed  Google Scholar 

  29. Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng 20(4):439–449

    CAS  PubMed  Google Scholar 

  30. Cha K, Horch KW, Normann RA (1992) Mobility performance with a pixelized vision system. Vision Res 32(7):1367–1372

    CAS  PubMed  Google Scholar 

  31. Cha K, Horch KW, Normann RA, Boman DK (1992) Reading speed with a pixelized vision system. J Opt Soc Am A 9(5):673–677

    CAS  PubMed  Google Scholar 

  32. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22(5):607–655

    PubMed  Google Scholar 

  33. Jones BW, Marc RE (2005) Retinal remodeling during retinal degeneration. Exp Eye Res 81(2):123–137

    CAS  PubMed  Google Scholar 

  34. Ayton LN, Guymer RH, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Experiment Ophthalmol 41(4):396–403

    PubMed  Google Scholar 

  35. Hood DC et al (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(5):2328–2336

    PubMed Central  PubMed  Google Scholar 

  36. Santos A et al (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515

    CAS  PubMed  Google Scholar 

  37. Stone JL, Barlow WE, Humayun MS, de Juan E Jr, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110(11):1634–1639

    CAS  PubMed  Google Scholar 

  38. Humayun MS et al (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40(1):143–148

    CAS  PubMed  Google Scholar 

  39. Kim SY et al (2002) Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration. Retina 22(4):464–470

    CAS  PubMed  Google Scholar 

  40. Kim SY et al (2002) Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina 22(4):471–477

    CAS  PubMed  Google Scholar 

  41. Lakhanpal RR et al (2003) Advances in the development of visual prostheses. Curr Opin Ophthalmol 14(3):122–127

    PubMed  Google Scholar 

  42. Humayun MS et al (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43(24):2573–2581

    PubMed  Google Scholar 

  43. Humayun MS et al (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114(1):40–46

    CAS  PubMed  Google Scholar 

  44. Chow AY et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122(4):460–469

    PubMed  Google Scholar 

  45. Guven D et al (2005) Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng 2(1):S65–73

    PubMed  Google Scholar 

  46. da Cruz L et al (2013) The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 5:632–636

    Google Scholar 

  47. Humayun MS et al (2012) Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119(4):779–788

    PubMed Central  PubMed  Google Scholar 

  48. Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401

    CAS  PubMed  Google Scholar 

  49. Ong JM, Da Cruz L (2012) The bionic eye: a review. Clin Experiment Ophthalmol 40(1):6–17

    PubMed  Google Scholar 

  50. Humayun MS et al (2009) Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc 2009:4566–4568

    PubMed Central  PubMed  Google Scholar 

  51. Weiland JD et al (2004) Visual task performance in blind humans with retinal prosthetic implants. Conf Proc IEEE Eng Med Biol Soc 6:4172–4173

    CAS  PubMed  Google Scholar 

  52. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29(5):281–289

    CAS  PubMed  Google Scholar 

  53. Hornig R et al (2007) The IMI retinal implant system. In: Humayun MS, Chader GJ, Weiland JD (eds) Artifical sight: basic research, biomedical engineering and clinical advances. Springer, New York, pp 111–128

    Google Scholar 

  54. Roessler G et al (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50(6):3003–3008

    PubMed  Google Scholar 

  55. Chowdhury V, Morley JW, Coroneo MT (2005) Feasibility of extraocular stimulation for a retinal prosthesis. Can J Ophthalmol 40(5):563–572

    PubMed  Google Scholar 

  56. Chowdhury V, Morley JW, Coroneo MT (2005) Stimulation of the retina with a multielectrode extraocular visual prosthesis. ANZ J Surg 75(8):697–704

    PubMed  Google Scholar 

  57. Lee SW et al (2009) Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci 50(12):5859–5866

    PubMed  Google Scholar 

  58. Zauberman H, Berman ER (1969) Measurement of adhesive forces between the sensory retina and the pigment epithelium. Exp Eye Res 8(3):276–283

    CAS  PubMed  Google Scholar 

  59. Chow AY et al (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9(1):86–95

    CAS  PubMed  Google Scholar 

  60. Chow AY et al (2002) Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. J Rehabil Res Dev 39(3):313–321

    PubMed  Google Scholar 

  61. Pardue MT et al (2001) Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. Exp Eye Res 73(3):333–343

    CAS  PubMed  Google Scholar 

  62. Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025

    CAS  PubMed  Google Scholar 

  63. Pardue MT et al (2006) Neuroprotection of photoreceptors in the RCS rat after implantation of a subretinal implant in the superior or inferior retina. Adv Exp Med Biol 572:321–326

    PubMed  Google Scholar 

  64. Pardue MT et al (2005) Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2(1):S39–47

    PubMed  Google Scholar 

  65. Sachs HG, Bartz-Schmidt KU, Gekeler F (2010) Subretinal visual prosthetic devices in blind patients. Modifications in transchoroidal surgery and long term follow up in the first 12 patients. Annual meeting of the Association for Research in Vision and Ophthalmology

    Google Scholar 

  66. Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44(12):5362–5369

    PubMed  Google Scholar 

  67. Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44(12):5355–5361

    PubMed  Google Scholar 

  68. Javaheri M, Hahn DS, Lakhanpal RR, Weiland JD, Humayun MS (2006) Retinal prostheses for the blind. Ann Acad Med Singapore 35(3):137–144

    PubMed  Google Scholar 

  69. Kelly SK et al (2009) Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind. Conf Proc IEEE Eng Med Biol Soc 2009:200–203

    PubMed  Google Scholar 

  70. Shire DB et al (2009) Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 56(10):2502–2511

    PubMed  Google Scholar 

  71. Mandel Y et al (2013) Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat Commun 4:1980

    PubMed  Google Scholar 

  72. Mathieson K et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photon 6(6):391–397

    CAS  Google Scholar 

  73. Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39(4):424–426

    CAS  PubMed  Google Scholar 

  74. Fujikado T et al (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245(10):1411–1419

    PubMed  Google Scholar 

  75. Cicione R et al (2012) Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng 9(3):036009

    PubMed  Google Scholar 

  76. Shivdasani MN et al (2012) Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses. Invest Ophthalmol Vis Sci 53(10):6291–6300

    PubMed  Google Scholar 

  77. Shivdasani MN et al (2010) Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng 7(3):036008

    PubMed  Google Scholar 

  78. Villalobos J et al (2013) A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Invest Ophthalmol Vis Sci 54(5):3751–3762

    PubMed  Google Scholar 

  79. Allen PJ et al (2013) Implantation of a suprachoroidal retinal prosthesis results in number and letter recognition. Association for Research in Vision and Ophthalmology

    Google Scholar 

  80. Ayton LN et al (2013) Decrease in electrode-retina distance over time and its effect on electrical impedances in a suprachoroidal retinal prosthesis. Association for Research in Vision and Ophthalmology (ARVO).

    Google Scholar 

  81. Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 43(9):1091–1102

    PubMed  Google Scholar 

  82. Veraart C et al (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186

    CAS  PubMed  Google Scholar 

  83. Brelen ME, Vince V, Gerard B, Veraart C, Delbeke J (2010) Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest Ophthalmol Vis Sci 51(10):5351–5355

    PubMed  Google Scholar 

  84. Sakaguchi H et al (2009) Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. J Artif Organs 12(3):206–209

    PubMed  Google Scholar 

  85. Cai C et al (2009) Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits. Doc Ophthalmol 118(3):191–204

    PubMed  Google Scholar 

  86. Sun J et al (2011) Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest Ophthalmol Vis Sci 52(1):146–154

    PubMed  Google Scholar 

  87. Li L et al (2009) Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Graefes Arch Clin Exp Ophthalmol 247(3):349–361

    PubMed  Google Scholar 

  88. Fang X et al (2005) Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243(1):49–56

    PubMed  Google Scholar 

  89. Brelen ME, Duret F, Gerard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2(1):S22–28

    CAS  PubMed  Google Scholar 

  90. Duret F et al (2006) Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor Neurol Neurosci 24(1):31–40

    PubMed  Google Scholar 

  91. Veraart C, Duret F, Brelen M, Delbeke J (2004) Vision rehabilitation with the optic nerve visual prosthesis. Conf Proc IEEE Eng Med Biol Soc 6:4163–4164

    CAS  PubMed  Google Scholar 

  92. Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27(11):996–1004

    PubMed  Google Scholar 

  93. Pezaris JS, Eskandar EN (2009) Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus 27(1):E6

    PubMed Central  PubMed  Google Scholar 

  94. Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci U S A 104(18):7670–7675

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Pezaris JS, Reid RC (2009) Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans Biomed Eng 56(1):172–178

    PubMed  Google Scholar 

  96. Schmidt EM et al (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2):507–522

    PubMed  Google Scholar 

  97. Normann RA et al (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6(3):035001

    PubMed Central  PubMed  Google Scholar 

  98. Troyk PR et al (2005) Intracortical visual prosthesis research—approach and progress. Conf Proc IEEE Eng Med Biol Soc 7:7376–7379

    CAS  PubMed  Google Scholar 

  99. Yu HH, Rosa MG (2010) A simple method for creating wide-field visual stimulus for electrophysiology: mapping and analyzing receptive fields using a hemispheric display. J Vis 10(14):15

    PubMed  Google Scholar 

  100. Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J (1998) Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev 35(4):427–430

    CAS  PubMed  Google Scholar 

  101. Ptito M, Moesgaard S, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128:606–614

    PubMed  Google Scholar 

  102. Nau A (2011) BrainPort vision device. In: NEI/FDA use of functional endpoints in visual prostheses product development. National Institutes of Health, Bethesda, MD

    Google Scholar 

  103. Ayton LN & Rizzo JF (2013) Psychophysical testing of visual prosthetic devices: A call to establish a multi-national joint task force. J Neural Eng In press.

    Google Scholar 

  104. Chen SC, Suaning GJ, Morley JW, Lovell NH (2009) Simulating prosthetic vision: II. Measuring functional capacity. Vision Res 49(19):2329–2343

    PubMed  Google Scholar 

  105. Chen SC, Suaning GJ, Morley JW, Lovell NH (2009) Simulating prosthetic vision: I. Visual models of phosphenes. Vision Res 49(12):1493–1506

    PubMed  Google Scholar 

  106. Chen SC, Lovell NH, Suaning GJ (2004) Effect on prosthetic vision visual acuity by filtering schemes, filter cut-off frequency and phosphene matrix: a virtual reality simulation. Conf Proc IEEE Eng Med Biol Soc 6:4201–4204

    CAS  PubMed  Google Scholar 

  107. Chen SC, Hallum LE, Lovell NH, Suaning GJ (2005) Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. J Neural Eng 2(1):S135–145

    CAS  PubMed  Google Scholar 

  108. Chen SC, Suaning GJ, Morley JW, Lovell NH (2009) Rehabilitation regimes based upon psychophysical studies of prosthetic vision. J Neural Eng 6(3):035009

    CAS  PubMed  Google Scholar 

  109. Bach M, Wilke M, Wilhelm B, Zrenner E, Wilke R (2010) Basic quantitative assessment of visual performance in patients with very low vision. Invest Ophthalmol Vis Sci 51(2):1255–1260

    PubMed  Google Scholar 

  110. Wilke R et al (2007) Testing visual functions in patients with visual prostheses. In: Humayun M, Weiland J, Chader GJ, Greenbaum E (eds) Artificial sight: basic research, biomedical engineering, and clinical advances. Springer, Oak Ridge, TN, pp 91–110

    Google Scholar 

  111. Bailey IL, Jackson AJ, Minto H, Greer RB, Chu MA (2012) The Berkeley Rudimentary Vision Test. Optom Vis Sci 89(9):1257–1264

    PubMed  Google Scholar 

  112. Yanai D et al (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol 143(5):820–827

    PubMed  Google Scholar 

  113. Caspi A et al (2009) Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch Ophthalmol 127(4):398–401

    PubMed  Google Scholar 

  114. Keeffe JE, Francis KL, Luu CD, Barnes N, & Guymer RH (2011) Patients’ perspectives and expectations on visual prostheses. Unpublished data.

    Google Scholar 

  115. Barnes N et al (2011) Mobility experiments with simulated vision and sensory substitution of depth in association for research in vision and ophthalmology, Fort Lauderdale, FL

    Google Scholar 

  116. Gillespie LN, Shepherd RK (2005) Clinical application of neurotrophic factors: the potential for primary auditory neuron protection. Eur J Neurosci 22(9):2123–2133

    PubMed Central  PubMed  Google Scholar 

  117. Pettingill LN, Richardson RT, Wise AK, O’Leary SJ, Shepherd RK (2007) Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans Biomed Eng 54(6 Pt 1):1138–1148

    PubMed Central  PubMed  Google Scholar 

  118. Pettingill LN, Wise AK, Geaney MS, Shepherd RK (2011) Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One 6(4):e18733

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Morimoto T et al (2012) Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. Invest Ophthalmol Vis Sci 53(7):4254–4261

    PubMed  Google Scholar 

  120. Morimoto T et al (2007) Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest Ophthalmol Vis Sci 48(10):4725–4732

    PubMed  Google Scholar 

  121. Pardue MT et al (2005) Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 46(2):674–682

    PubMed  Google Scholar 

  122. Ni YQ, Gan DK, Xu HD, Xu GZ, Da CD (2009) Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 219(2):439–452

    PubMed  Google Scholar 

  123. Paskowitz DM et al (2007) Neurotrophic factors minimize the retinal toxicity of verteporfin photodynamic therapy. Invest Ophthalmol Vis Sci 48(1):430–437

    PubMed  Google Scholar 

  124. Sato T, Fujikado T, Lee TS, Tano Y (2008) Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Muller cells. Invest Ophthalmol Vis Sci 49(10):4641–4646

    PubMed  Google Scholar 

  125. Kurimoto T et al (2010) Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clin Ophthalmol 4:1441–1446

    PubMed Central  PubMed  Google Scholar 

  126. Inomata K et al (2007) Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 245(12):1773–1780

    PubMed  Google Scholar 

  127. Oono S et al (2011) Transcorneal electrical stimulation improves visual function in eyes with branch retinal artery occlusion. Clin Ophthalmol 5:397–402

    PubMed Central  PubMed  Google Scholar 

  128. Schatz A et al (2011) Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Invest Ophthalmol Vis Sci 52(7):4485–4496

    PubMed  Google Scholar 

  129. Apkarian PA (1983) Visual training after long term deprivation: a case report. Int J Neurosci 19(1–4):65–83

    CAS  PubMed  Google Scholar 

  130. Romano PE, Romano JA, Puklin JE (1975) Stereoacuity development in children with normal binocular single vision. Am J Ophthalmol 79(6):966–971

    CAS  PubMed  Google Scholar 

  131. Veraart C et al (1990) Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res 510(1):115–121

    CAS  PubMed  Google Scholar 

  132. Barnes N et al (2012) The role of vision processing in prosthetic vision. Conf Proc IEEE Eng Med Biol Soc 2012:308–311

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren N. Ayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ayton, L.N., Guymer, R.H., Allen, P.J., Luu, C.D. (2014). Bionic Eyes: Vision Restoration Through Electronic or Photovoltaic Stimulation. In: Pébay, A. (eds) Regenerative Biology of the Eye. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0787-8_13

Download citation

Publish with us

Policies and ethics