Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Psychoacoustics is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. This chapter describes: the absolute sensitivity of the auditory system for detecting weak sounds and how that sensitivity varies with frequency; the frequency selectivity of the auditory system (the ability to resolve or hear out the sinusoidal components in a complex sound) and its characterization in terms of an array of auditory filters; the processes that influence the masking of one sound by another; the range of sound levels that can be processed by the auditory system; the perception and modeling of loudness; level discrimination; the temporal resolution of the auditory system (the ability to detect changes over time); the perception and modeling of pitch for pure and complex tones; the perception of timbre for steady and time-varying sounds; the perception of space and sound localization; and the mechanisms underlying auditory scene analysis that allow the construction of percepts corresponding to individual sounds sources when listening to complex mixtures of sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2AFC:

two-alternative forced choice

AM:

amplitude modulation

ANSI:

American National Standards Institute

BM:

basilar membrane

CD:

compact disc

CF:

characteristic frequency

DL:

difference limen

DLF:

difference limen for frequency

ERB:

equivalent rectangular bandwidth

FM:

frequency modulation

FMDL:

frequency modulation detection limen

HL:

hearing level

HTL:

hearing threshold level

ISO:

International Organization for Standardization

ITD:

interaural time difference

MAF:

minimum audible field

MAP:

minimum audible pressure

MLD:

masking level difference

PTC:

psychophysical tuning curve

SL:

sensation level

SPL:

sound pressure level

TMTF:

temporal modulation transfer function

References

  1. ISO 389-7: Acoustics – Reference zero for the calibration of audiometric equipment. Part 7: Reference threshold of hearing under free-field and diffuse-field listening conditions (International Organization for Standardization, Geneva 2005)

    Google Scholar 

  2. M.C. Killion: Revised estimate of minimal audible pressure: Where is the ``missing 6 dBʼʼ?, J. Acoust. Soc. Am. 63, 1501–1510 (1978)

    ADS  Google Scholar 

  3. B.C.J. Moore, B.R. Glasberg, T. Baer: A model for the prediction of thresholds, loudness and partial loudness, J. Audio Eng. Soc. 45, 224–240 (1997)

    Google Scholar 

  4. M.A. Cheatham, P. Dallos: Inner hair cell response patterns: implications for low-frequency hearing, J. Acoust. Soc. Am. 110, 2034–2044 (2001)

    ADS  Google Scholar 

  5. L.J. Sivian, S.D. White: On minimum audible sound fields, J. Acoust. Soc. Am. 4, 288–321 (1933)

    ADS  Google Scholar 

  6. I. Pollack: Monaural and binaural threshold sensitivity for tones and for white noise, J. Acoust. Soc. Am. 20, 52–57 (1948)

    ADS  Google Scholar 

  7. J.K. Dierks, L.A. Jeffress: Interaural phase and the absolute threshold for tone, J. Acoust. Soc. Am. 34, 981–986 (1962)

    ADS  Google Scholar 

  8. K. Krumbholz, R.D. Patterson, D. Pressnitzer: The lower limit of pitch as determined by rate discrimination, J. Acoust. Soc. Am. 108, 1170–1180 (2000)

    ADS  Google Scholar 

  9. R. Plomp, M.A. Bouman: Relation between hearing threshold and duration for tone pulses, J. Acoust. Soc. Am. 31, 749–758 (1959)

    ADS  Google Scholar 

  10. ANSI: ANSI S1.1-1994. American National Standard Acoustical Terminology (American National Standards Institute, New York 1994)

    Google Scholar 

  11. R.L. Wegel, C.E. Lane: The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear, Phys. Rev. 23, 266–285 (1924)

    ADS  Google Scholar 

  12. L.L. Vogten: Low-level pure-tone masking: a comparison of “tuning curves” obtained with simultaneous and forward masking, J. Acoust. Soc. Am. 63, 1520–1527 (1978)

    ADS  Google Scholar 

  13. H. Fletcher: Auditory patterns, Rev. Mod. Phys. 12, 47–65 (1940)

    ADS  Google Scholar 

  14. H.L.F. Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Vieweg, Braunschweig 1863)

    Google Scholar 

  15. R.D. Patterson, B.C.J. Moore: Auditory filters and excitation patterns as representations of frequency resolution. In: Frequency Selectivity in Hearing, ed. by B.C.J. Moore (Academic, London 1986)

    Google Scholar 

  16. D. Johnson-Davies, R.D. Patterson: Psychophysical tuning curves: restricting the listening band to the signal region, J. Acoust. Soc. Am. 65, 765–770 (1979)

    ADS  Google Scholar 

  17. B.J. OʼLoughlin, B.C.J. Moore: Off-frequency listening: effects on psychoacoustical tuning curves obtained in simultaneous and forward masking, J. Acoust. Soc. Am. 69, 1119–1125 (1981)

    ADS  Google Scholar 

  18. B.J. OʼLoughlin, B.C.J. Moore: Improving psychoacoustical tuning curves, Hear. Res. 5, 343–346 (1981)

    Google Scholar 

  19. R.D. Patterson: Auditory filter shapes derived with noise stimuli, J. Acoust. Soc. Am. 59, 640–654 (1976)

    ADS  Google Scholar 

  20. B.R. Glasberg, B.C.J. Moore: Derivation of auditory filter shapes from notched-noise data, Hear. Res. 47, 103–138 (1990)

    Google Scholar 

  21. J.P. Egan, H.W. Hake: On the masking pattern of a simple auditory stimulus, J. Acoust. Soc. Am. 22, 622–630 (1950)

    ADS  Google Scholar 

  22. E. Zwicker, E. Terhardt: Analytical expressions for critical band rate and critical bandwidth as a function of frequency, J. Acoust. Soc. Am. 68, 1523–1525 (1980)

    ADS  Google Scholar 

  23. R.D. Patterson, I. Nimmo-Smith: Off-frequency listening and auditory filter asymmetry, J. Acoust. Soc. Am. 67, 229–245 (1980)

    ADS  Google Scholar 

  24. B.C.J. Moore, B.R. Glasberg: Formulae describing frequency selectivity as a function of frequency and level and their use in calculating excitation patterns, Hear. Res. 28, 209–225 (1987)

    Google Scholar 

  25. S. Rosen, R.J. Baker, A. Darling: Auditory filter nonlinearity at 2 kHz in normal hearing listeners, J. Acoust. Soc. Am. 103, 2539–2550 (1998)

    ADS  Google Scholar 

  26. B.R. Glasberg, B.C.J. Moore, R.D. Patterson, I. Nimmo-Smith: Dynamic range and asymmetry of the auditory filter, J. Acoust. Soc. Am. 76, 419–427 (1984)

    ADS  Google Scholar 

  27. E. Zwicker, H. Fastl: Psychoacoustics – Facts and Models, 2nd edn. (Springer, Berlin 1999)

    Google Scholar 

  28. B.C.J. Moore, J.I. Alcántara, T. Dau: Masking patterns for sinusoidal and narrowband noise maskers, J. Acoust. Soc. Am. 104, 1023–1038 (1998)

    ADS  Google Scholar 

  29. B.C.J. Moore, B.R. Glasberg: Suggested formulae for calculating auditory-filter bandwidths and excitation patterns, J. Acoust. Soc. Am. 74, 750–753 (1983)

    ADS  Google Scholar 

  30. Auditory Perception Group in the Department of Psychology, University of Cambridge, Cambridge, UK, available from http://hearing.psychol.cam.ac.uk/Demos/demos.html

  31. K. Miyazaki, T. Sasaki: Pure-tone masking patterns in nonsimultaneous masking conditions, Jap. Psychol. Res. 26, 110–119 (1984)

    Google Scholar 

  32. A.J. Oxenham, B.C.J. Moore: Modeling the additivity of nonsimultaneous masking, Hear. Res. 80, 105–118 (1994)

    Google Scholar 

  33. B.C.J. Moore, B.R. Glasberg: Growth of forward masking for sinusoidal and noise maskers as a function of signal delay: implications for suppression in noise, J. Acoust. Soc. Am. 73, 1249–1259 (1983)

    ADS  Google Scholar 

  34. G. Kidd, L.L. Feth: Effects of masker duration in pure-tone forward masking, J. Acoust. Soc. Am. 72, 1384–1386 (1982)

    ADS  Google Scholar 

  35. E. Zwicker: Dependence of post-masking on masker duration and its relation to temporal effects in loudness, J. Acoust. Soc. Am. 75, 219–223 (1984)

    ADS  Google Scholar 

  36. H. Fastl: Temporal masking effects: I. Broad band noise masker, Acustica 35, 287–302 (1976)

    Google Scholar 

  37. H. Duifhuis: Audibility of high harmonics in a periodic pulse II. Time effects, J. Acoust. Soc. Am. 49, 1155–1162 (1971)

    ADS  Google Scholar 

  38. H. Duifhuis: Consequences of peripheral frequency selectivity for nonsimultaneous masking, J. Acoust. Soc. Am. 54, 1471–1488 (1973)

    ADS  Google Scholar 

  39. C.J. Plack, B.C.J. Moore: Temporal window shape as a function of frequency and level, J. Acoust. Soc. Am. 87, 2178–2187 (1990)

    ADS  Google Scholar 

  40. W. Jesteadt, S.P. Bacon, J.R. Lehman: Forward masking as a function of frequency, masker level, and signal delay, J. Acoust. Soc. Am. 71, 950–962 (1982)

    ADS  Google Scholar 

  41. R.L. Smith: Short-term adaptation in single auditory-nerve fibers: Some poststimulatory effects, J. Neurophysiol. 49, 1098–1112 (1977)

    Google Scholar 

  42. C.W. Turner, E.M. Relkin, J. Doucet: Psychophysical and physiological forward masking studies: Probe duration and rise-time effects, J. Acoust. Soc. Am. 96, 795–800 (1994)

    ADS  Google Scholar 

  43. A.J. Oxenham: Forward masking: adaptation or integration?, J. Acoust. Soc. Am. 109, 732–741 (2001)

    ADS  Google Scholar 

  44. M. Brosch, C.E. Schreiner: Time course of forward masking tuning curves in cat primary auditory cortex, J. Neurophysiol. 77, 923–943 (1997)

    Google Scholar 

  45. A.J. Oxenham, B.C.J. Moore: Additivity of masking in normally hearing and hearing-impaired subjects, J. Acoust. Soc. Am. 98, 1921–1934 (1995)

    ADS  Google Scholar 

  46. R. Plomp: The ear as a frequency analyzer, J. Acoust. Soc. Am. 36, 1628–1636 (1964)

    ADS  Google Scholar 

  47. R. Plomp, A.M. Mimpen: The ear as a frequency analyzer II, J. Acoust. Soc. Am. 43, 764–767 (1968)

    ADS  Google Scholar 

  48. B.C.J. Moore, K. Ohgushi: Audibility of partials in inharmonic complex tones, J. Acoust. Soc. Am. 93, 452–461 (1993)

    ADS  Google Scholar 

  49. D.R. Soderquist: Frequency analysis and the critical band, Psychon. Sci. 21, 117–119 (1970)

    Google Scholar 

  50. P.A. Fine, B.C.J. Moore: Frequency analysis and musical ability, Music Percept. 11, 39–53 (1993)

    Google Scholar 

  51. B. Gabriel, B. Kollmeier, V. Mellert: Influence of individual listener, measurement room and choice of test-tone levels on the shape of equal-loudness level contours, Acust. Acta Acust. 83, 670–683 (1997)

    Google Scholar 

  52. D. Laming: The Measurement of Sensation (Oxford University Press, Oxford 1997)

    Google Scholar 

  53. H. Fletcher, W.A. Munson: Loudness, its definition, measurement and calculation, J. Acoust. Soc. Am. 5, 82–108 (1933)

    ADS  Google Scholar 

  54. ISO 226: Acoustics – normal equal-loudness contours (International Organization for Standardization, Geneva 2003)

    Google Scholar 

  55. S.S. Stevens: On the psychophysical law, Psych. Rev. 64, 153–181 (1957)

    Google Scholar 

  56. R.P. Hellman, J.J. Zwislocki: Some factors affecting the estimation of loudness, J. Acoust. Soc. Am. 35, 687–694 (1961)

    Google Scholar 

  57. E.M. Relkin, J.R. Doucet: Is loudness simply proportional to the auditory nerve spike count?, J. Acoust. Soc. Am. 191, 2735–2740 (1997)

    ADS  Google Scholar 

  58. H. Fletcher, W.A. Munson: Relation between loudness and masking, J. Acoust. Soc. Am. 9, 1–10 (1937)

    ADS  Google Scholar 

  59. E. Zwicker: Über psychologische und methodische Grundlagen der Lautheit, Acustica 8, 237–258 (1958)

    Google Scholar 

  60. E. Zwicker, B. Scharf: A model of loudness summation, Psych. Rev. 72, 3–26 (1965)

    Google Scholar 

  61. B.R. Glasberg, B.C.J. Moore: A model of loudness applicable to time-varying sounds, J. Audio Eng. Soc. 50, 331–342 (2002)

    Google Scholar 

  62. H. Fastl: Loudness evaluation by subjects and by a loudness meter. In: Sensory Research – Multimodal Perspectives, ed. by R.T. Verrillo (Erlbaum, Hillsdale, New Jersey 1993)

    Google Scholar 

  63. ANSI: ANSI S3.4-2007. Procedure for the Computation of Loudness of Steady Sounds (American National Standards Institute, New York 2007)

    Google Scholar 

  64. E. Zwicker, G. Flottorp, S.S. Stevens: Critical bandwidth in loudness summation, J. Acoust. Soc. Am. 29, 548–557 (1957)

    ADS  Google Scholar 

  65. B. Scharf: Complex sounds and critical bands, Psychol. Bull. 58, 205–217 (1961)

    Google Scholar 

  66. B. Scharf: Critical bands. In: Foundations of Modern Auditory Theory, ed. by J.V. Tobias (Academic, New York 1970)

    Google Scholar 

  67. B.C.J. Moore, B.R. Glasberg: The role of frequency selectivity in the perception of loudness, pitch and time. In: Frequency Selectivity in Hearing, ed. by B.C.J. Moore (Academic, London 1986)

    Google Scholar 

  68. G.A. Miller: Sensitivity to changes in the intensity of white noise and its relation to masking and loudness, J. Acoust. Soc. Am. 191, 609–619 (1947)

    ADS  Google Scholar 

  69. R.R. Riesz: Differential intensity sensitivity of the ear for pure tones, Phys. Rev. 31, 867–875 (1928)

    ADS  Google Scholar 

  70. N.F. Viemeister, S.P. Bacon: Intensity discrimination, increment detection, and magnitude estimation for 1-kHz tones, J. Acoust. Soc. Am. 84, 172–178 (1988)

    ADS  Google Scholar 

  71. S.P. Bacon, N.F. Viemeister: Temporal modulation transfer functions in normal-hearing and hearing-impaired subjects, Audiology 24, 117–134 (1985)

    Google Scholar 

  72. N.F. Viemeister, C.J. Plack: Time analysis. In: Human Psychophysics, ed. by W.A. Yost, A.N. Popper, R.R. Fay (Springer, New York 1993)

    Google Scholar 

  73. R. Plomp: The rate of decay of auditory sensation, J. Acoust. Soc. Am. 36, 277–282 (1964)

    ADS  Google Scholar 

  74. M.J. Penner: Detection of temporal gaps in noise as a measure of the decay of auditory sensation, J. Acoust. Soc. Am. 61, 552–557 (1977)

    ADS  Google Scholar 

  75. D. Ronken: Monaural detection of a phase difference between clicks, J. Acoust. Soc. Am. 47, 1091–1099 (1970)

    ADS  Google Scholar 

  76. D.M. Green: Temporal acuity as a function of frequency, J. Acoust. Soc. Am. 54, 373–379 (1973)

    ADS  Google Scholar 

  77. B.C.J. Moore, R.W. Peters, B.R. Glasberg: Detection of temporal gaps in sinusoids: Effects of frequency and level, J. Acoust. Soc. Am. 93, 1563–1570 (1993)

    ADS  Google Scholar 

  78. A. Kohlrausch, R. Fassel, T. Dau: The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers, J. Acoust. Soc. Am. 108, 723–734 (2000)

    ADS  Google Scholar 

  79. B.C.J. Moore, B.R. Glasberg: Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners, J. Acoust. Soc. Am. 110, 1067–1073 (2001)

    ADS  Google Scholar 

  80. H. Fleischer: Modulationsschwellen von Schmalbandrauschen, Acustica 51, 154–161 (1982)

    Google Scholar 

  81. T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory processing of amplitude modulation: I. Detection and masking with narrowband carriers, J. Acoust. Soc. Am. 102, 2892–2905 (1997)

    ADS  Google Scholar 

  82. T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration, J. Acoust. Soc. Am. 102, 2906–2919 (1997)

    ADS  Google Scholar 

  83. T. Dau, J.L. Verhey, A. Kohlrausch: Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers, J. Acoust. Soc. Am. 106, 2752–2760 (1999)

    ADS  Google Scholar 

  84. N.F. Viemeister: Temporal modulation transfer functions based on modulation thresholds, J. Acoust. Soc. Am. 66, 1364–1380 (1979)

    ADS  Google Scholar 

  85. B.C.J. Moore, B.R. Glasberg, C.J. Plack, A.K. Biswas: The shape of the earʼs temporal window, J. Acoust. Soc. Am. 83, 1102–1116 (1988)

    ADS  Google Scholar 

  86. R.H. Kay: Hearing of modulation in sounds, Physiol. Rev. 62, 894–975 (1982)

    Google Scholar 

  87. T. Houtgast: Frequency selectivity in amplitude-modulation detection, J. Acoust. Soc. Am. 85, 1676–1680 (1989)

    ADS  Google Scholar 

  88. S.P. Bacon, D.W. Grantham: Modulation masking: effects of modulation frequency, depth and phase, J. Acoust. Soc. Am. 85, 2575–2580 (1989)

    ADS  Google Scholar 

  89. S.D. Ewert, T. Dau: Characterizing frequency selectivity for envelope fluctuations, J. Acoust. Soc. Am. 108, 1181–1196 (2000)

    ADS  Google Scholar 

  90. C. Lorenzi, C. Soares, T. Vonner: Second-order temporal modulation transfer functions, J. Acoust. Soc. Am. 110, 1030–1038 (2001)

    ADS  Google Scholar 

  91. A. Sek, B.C.J. Moore: Testing the concept of a modulation filter bank: The audibility of component modulation and detection of phase change in three-component modulators, J. Acoust. Soc. Am. 113, 2801–2811 (2003)

    ADS  Google Scholar 

  92. C.D. Creelman: Human discrimination of auditory duration, J. Acoust. Soc. Am. 34, 582–593 (1962)

    ADS  Google Scholar 

  93. S.M. Abel: Duration discrimination of noise and tone bursts, J. Acoust. Soc. Am. 51, 1219–1223 (1972)

    ADS  Google Scholar 

  94. S.M. Abel: Discrimination of temporal gaps, J. Acoust. Soc. Am. 52, 519–524 (1972)

    ADS  Google Scholar 

  95. P.L. Divenyi, W.F. Danner: Discrimination of time intervals marked by brief acoustic pulses of various intensities and spectra, Percept. Psychophys. 21, 125–142 (1977)

    Google Scholar 

  96. J.H. Patterson, D.M. Green: Discrimination of transient signals having identical energy spectra, J. Acoust. Soc. Am. 48, 894–905 (1970)

    ADS  Google Scholar 

  97. J. Zera, D.M. Green: Detecting temporal onset and offset asynchrony in multicomponent complexes, J. Acoust. Soc. Am. 93, 1038–1052 (1993)

    ADS  Google Scholar 

  98. J.C. Risset, D.L. Wessel: Exploration of timbre by analysis and synthesis. In: The Psychology of Music, 2nd edn., ed. by D. Deutsch (Academic, San Diego 1999)

    Google Scholar 

  99. G. von Békésy: Experiments in Hearing (McGraw–Hill, New York 1960)

    Google Scholar 

  100. J.F. Schouten: The residue and the mechanism of hearing, Proc. Kon. Ned. Akad. Wetenschap. 43, 991–999 (1940)

    Google Scholar 

  101. W.M. Siebert: Frequency discrimination in the auditory system: place or periodicity mechanisms, Proc. IEEE 58, 723–730 (1970)

    Google Scholar 

  102. E. Zwicker: Masking and psychological excitation as consequences of the earʼs frequency analysis. In: Frequency Analysis and Periodicity Detection in Hearing, ed. by R. Plomp, G.F. Smoorenburg (Sijthoff, Leiden 1970)

    Google Scholar 

  103. A. Sek, B.C.J. Moore: Frequency discrimination as a function of frequency, measured in several ways, J. Acoust. Soc. Am. 97, 2479–2486 (1995)

    ADS  Google Scholar 

  104. C.C. Wier, W. Jesteadt, D.M. Green: Frequency discrimination as a function of frequency and sensation level, J. Acoust. Soc. Am. 61, 178–184 (1977)

    ADS  Google Scholar 

  105. B.C.J. Moore: Relation between the critical bandwidth and the frequency-difference limen, J. Acoust. Soc. Am. 55, 359 (1974)

    ADS  Google Scholar 

  106. J.L. Goldstein, P. Srulovicz: Auditory-nerve spike intervals as an adequate basis for aural frequency measurement. In: Psychophysics and Physiology of Hearing, ed. by E.F. Evans, J.P. Wilson (Academic, London 1977)

    Google Scholar 

  107. B.C.J. Moore, A. Sek: Detection of frequency modulation at low modulation rates: Evidence for a mechanism based on phase locking, J. Acoust. Soc. Am. 100, 2320–2331 (1996)

    ADS  Google Scholar 

  108. G. Revesz: Zur Grundlegung der Tonpsychologie (Veit, Leipzig 1913)

    Google Scholar 

  109. A. Bachem: Tone height and tone chroma as two different pitch qualities, Acta Psych. 7, 80–88 (1950)

    Google Scholar 

  110. W.D. Ward: Subjective musical pitch, J. Acoust. Soc. Am. 26, 369–380 (1954)

    ADS  Google Scholar 

  111. F. Attneave, R.K. Olson: Pitch as a medium: A new approach to psychophysical scaling, Am. J. Psychol. 84, 147–166 (1971)

    Google Scholar 

  112. K. Ohgushi, T. Hatoh: Perception of the musical pitch of high frequency tones. In: Ninth International Symposium on Hearing: Auditory Physiology and Perception, ed. by Y. Cazals, L. Demany, K. Horner (Pergamon, Oxford 1991)

    Google Scholar 

  113. S.S. Stevens: The relation of pitch to intensity, J. Acoust. Soc. Am. 6, 150–154 (1935)

    ADS  Google Scholar 

  114. J. Verschuure, A.A. van Meeteren: The effect of intensity on pitch, Acustica 32, 33–44 (1975)

    Google Scholar 

  115. G.S. Ohm: Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen, Ann. Phys. Chem. 59, 513–565 (1843)

    ADS  Google Scholar 

  116. J.F. Schouten: The residue revisited. In: Frequency Analysis and Periodicity Detection in Hearing, ed. by R. Plomp, G.F. Smoorenburg (Sijthoff, Leiden, The Netherlands 1970)

    Google Scholar 

  117. J.C.R. Licklider: Auditory frequency analysis. In: Information Theorie, ed. by C. Cherry (Academic, New York 1956)

    Google Scholar 

  118. E. de Boer: On the “residue” in hearing. Ph.D. Thesis (University of Amsterdam, Amsterdam 1956)

    Google Scholar 

  119. J.L. Goldstein: An optimum processor theory for the central formation of the pitch of complex tones, J. Acoust. Soc. Am. 54, 1496–1516 (1973)

    ADS  Google Scholar 

  120. E. Terhardt: Pitch, consonance, and harmony, J. Acoust. Soc. Am. 55, 1061–1069 (1974)

    ADS  Google Scholar 

  121. G.F. Smoorenburg: Pitch perception of two-frequency stimuli, J. Acoust. Soc. Am. 48, 924–941 (1970)

    ADS  Google Scholar 

  122. A.J.M. Houtsma, J.F.M. Fleuren: Analytic and synthetic pitch of two-tone complexes, J. Acoust. Soc. Am. 90, 1674–1676 (1991)

    ADS  Google Scholar 

  123. J.L. Flanagan, M.G. Saslow: Pitch discrimination for synthetic vowels, J. Acoust. Soc. Am. 30, 435–442 (1958)

    ADS  Google Scholar 

  124. B.C.J. Moore, B.R. Glasberg, M.J. Shailer: Frequency and intensity difference limens for harmonics within complex tones, J. Acoust. Soc. Am. 75, 550–561 (1984)

    ADS  Google Scholar 

  125. B.C.J. Moore, B.R. Glasberg, R.W. Peters: Relative dominance of individual partials in determining the pitch of complex tones, J. Acoust. Soc. Am. 77, 1853–1860 (1985)

    ADS  Google Scholar 

  126. R. Plomp: Pitch of complex tones, J. Acoust. Soc. Am. 41, 1526–1533 (1967)

    ADS  Google Scholar 

  127. R.J. Ritsma: Frequencies dominant in the perception of the pitch of complex sounds, J. Acoust. Soc. Am. 42, 191–198 (1967)

    ADS  Google Scholar 

  128. R.P. Carlyon, T.M. Shackleton: Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms?, J. Acoust. Soc. Am. 95, 3541–3554 (1994)

    ADS  Google Scholar 

  129. A. Hoekstra, R.J. Ritsma: Perceptive hearing loss and frequency selectivity. In: Psychophysics and Physiology of Hearing, ed. by E.F. Evans, J.P. Wilson (Academic, London 1977)

    Google Scholar 

  130. A.J.M. Houtsma, J. Smurzynski: Pitch identification and discrimination for complex tones with many harmonics, J. Acoust. Soc. Am. 87, 304–310 (1990)

    ADS  Google Scholar 

  131. B.C.J. Moore, S.M. Rosen: Tune recognition with reduced pitch and interval information, Q. J. Exp. Psychol. 31, 229–240 (1979)

    Google Scholar 

  132. R. Meddis, M. Hewitt: A computational model of low pitch judgement. In: Basic Issues in Hearing, ed. by H. Duifhuis, J.W. Horst, H.P. Wit (Academic, London 1988)

    Google Scholar 

  133. R. Meddis, M. Hewitt: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification, J. Acoust. Soc. Am. 89, 2866–2882 (1991)

    ADS  Google Scholar 

  134. B.C.J. Moore: An Introduction to the Psychology of Hearing, 2nd edn. (Academic, London 1982)

    Google Scholar 

  135. B.C.J. Moore: An Introduction to the Psychology of Hearing, 6th edn. (Brill, Leiden 2012)

    Google Scholar 

  136. P. Srulovicz, J.L. Goldstein: A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum, J. Acoust. Soc. Am. 73, 1266–1276 (1983)

    ADS  Google Scholar 

  137. R. Plomp: Timbre as a multidimensional attribute of complex tones. In: Frequency Analysis and Periodicity Detection in Hearing, ed. by R. Plomp, G.F. Smoorenburg (Sijthoff, Leiden 1970)

    Google Scholar 

  138. G. von Bismarck: Sharpness as an attribute of the timbre of steady sounds, Acustica 30, 159–172 (1974)

    Google Scholar 

  139. R. Plomp: Aspects of Tone Sensation (Academic, London 1976)

    Google Scholar 

  140. R.D. Patterson: A pulse ribbon model of monaural phase perception, J. Acoust. Soc. Am. 82, 1560–1586 (1987)

    ADS  Google Scholar 

  141. R. Plomp, H.J.M. Steeneken: Effect of phase on the timbre of complex tones, J. Acoust. Soc. Am. 46, 409–421 (1969)

    ADS  Google Scholar 

  142. A.J. Watkins: Central, auditory mechanisms of perceptual compensation for spectral-envelope distortion, J. Acoust. Soc. Am. 90, 2942–2955 (1991)

    ADS  Google Scholar 

  143. J.F. Schouten: The perception of timbre, 6th International Conference on Acoustics 1, GP-6-2 (1968)

    Google Scholar 

  144. R.D. Patterson: The sound of a sinusoid: Spectral models, J. Acoust. Soc. Am. 96, 1409–1418 (1994)

    ADS  Google Scholar 

  145. R.D. Patterson: The sound of a sinusoid: Time-interval models, J. Acoust. Soc. Am. 96, 1419–1428 (1994)

    ADS  Google Scholar 

  146. M.A. Akeroyd, R.D. Patterson: Discrimination of wideband noises modulated by a temporally asymmetric function, J. Acoust. Soc. Am. 98, 2466–2474 (1995)

    ADS  Google Scholar 

  147. H.F. Pollard, E.V. Jansson: A tristimulus method for the specification of musical timbre, Acustica 51, 162–171 (1982)

    Google Scholar 

  148. S. Handel: Timbre perception and auditory object identification. In: Hearing, ed. by B.C.J. Moore (Academic, San Diego 1995)

    Google Scholar 

  149. A.W. Mills: On the minimum audible angle, J. Acoust. Soc. Am. 30, 237–246 (1958)

    ADS  Google Scholar 

  150. L. Rayleigh: On our perception of sound direction, Phil. Mag. 13, 214–232 (1907)

    Google Scholar 

  151. E.R. Hafter: Spatial hearing and the duplex theory: How viable?. In: Dynamic Aspects of Neocortical Function, ed. by G.M. Edelman, W.E. Gall, W.M. Cowan (Wiley, New York 1984)

    Google Scholar 

  152. G.B. Henning: Detectability of interaural delay in high-frequency complex waveforms, J. Acoust. Soc. Am. 55, 84–90 (1974)

    ADS  Google Scholar 

  153. D.W. Batteau: The role of the pinna in human localization, Proc. Roy. Soc. B. 168, 158–180 (1967)

    ADS  Google Scholar 

  154. J. Blauert: Spatial Hearing: The Psychophysics of Human Sound Localization (MIT Press, Cambridge, Mass 1997)

    Google Scholar 

  155. W.M. Hartmann, A. Wittenberg: On the externalization of sound images, J. Acoust. Soc. Am. 99, 3678–3688 (1996)

    ADS  Google Scholar 

  156. H. Haas: Über den Einfluss eines Einfachechos an die Hörsamkeit von Sprache, Acustica 1, 49–58 (1951)

    Google Scholar 

  157. H. Wallach, E.B. Newman, M.R. Rosenzweig: The precedence effect in sound localization, Am. J. Psychol. 62, 315–336 (1949)

    Google Scholar 

  158. R.Y. Litovsky, H.S. Colburn, W.A. Yost, S.J. Guzman: The precedence effect, J. Acoust. Soc. Am. 106, 1633–1654 (1999)

    ADS  Google Scholar 

  159. A.S. Bregman: Auditory Scene Analysis: The Perceptual Organization of Sound (Bradford Books, MIT Press, Cambridge, Mass. 1990)

    Google Scholar 

  160. A.S. Bregman, S. Pinker: Auditory streaming and the building of timbre, Canad. J. Psychol. 32, 19–31 (1978)

    Google Scholar 

  161. C.J. Darwin, R.P. Carlyon: Auditory grouping. In: Hearing, ed. by B.C.J. Moore (Academic, San Diego 1995)

    Google Scholar 

  162. D.E. Broadbent, P. Ladefoged: On the fusion of sounds reaching different sense organs, J. Acoust. Soc. Am. 29, 708–710 (1957)

    ADS  Google Scholar 

  163. M.T.M. Scheffers: Sifting vowels: auditory pitch analysis and sound segregation. Ph.D. Thesis (Groningen University, Groningen 1983)

    Google Scholar 

  164. P.F. Assmann, A.Q. Summerfield: Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies, J. Acoust. Soc. Am. 88, 680–697 (1990)

    ADS  Google Scholar 

  165. J.D. McKeown, R.D. Patterson: The time course of auditory segregation: Concurrent vowels that vary in duration, J. Acoust. Soc. Am. 98, 1866–1877 (1995)

    ADS  Google Scholar 

  166. B.C.J. Moore, B.R. Glasberg, R.W. Peters: Thresholds for hearing mistuned partials as separate tones in harmonic complexes, J. Acoust. Soc. Am. 80, 479–483 (1986)

    ADS  Google Scholar 

  167. B. Roberts, J.M. Brunstrom: Perceptual segregation and pitch shifts of mistuned components in harmonic complexes and in regular inharmonic complexes, J. Acoust. Soc. Am. 104, 2326–2338 (1998)

    ADS  Google Scholar 

  168. B. Roberts, J.M. Brunstrom: Perceptual fusion and fragmentation of complex tones made inharmonic by applying different degrees of frequency shift and spectral stretch, J. Acoust. Soc. Am. 110, 2479–2490 (2001)

    ADS  Google Scholar 

  169. R. Meddis, M. Hewitt: Modeling the identification of concurrent vowels with different fundamental frequencies, J. Acoust. Soc. Am. 91, 233–245 (1992)

    ADS  Google Scholar 

  170. A. de Cheveigné, S. McAdams, C.M.H. Marin: Concurrent vowel identification. II. Effects of phase, harmonicity and task, J. Acoust. Soc. Am. 101, 2848–2856 (1997)

    ADS  Google Scholar 

  171. A. de Cheveigné, H. Kawahara, M. Tsuzaki, K. Aikawa: Concurrent vowel identification. I. Effects of relative amplitude and F0 difference, J. Acoust. Soc. Am. 101, 2839–2847 (1997)

    ADS  Google Scholar 

  172. A. de Cheveigné: Concurrent vowel identification. III. A neural model of harmonic interference cancellation, J. Acoust. Soc. Am. 101, 2857–2865 (1997)

    ADS  Google Scholar 

  173. R.A. Rasch: The perception of simultaneous notes such as in polyphonic music, Acustica 40, 21–33 (1978)

    Google Scholar 

  174. C.J. Darwin, N.S. Sutherland: Grouping frequency components of vowels: when is a harmonic not a harmonic?, Q. J. Exp. Psychol. 36A, 193–208 (1984)

    Google Scholar 

  175. B. Roberts, B.C.J. Moore: The influence of extraneous sounds on the perceptual estimation of first-formant frequency in vowels under conditions of asynchrony, J. Acoust. Soc. Am. 89, 2922–2932 (1991)

    ADS  Google Scholar 

  176. E. Zwicker: ʼNegative afterimageʼ in hearing, J. Acoust. Soc. Am. 36, 2413–2415 (1964)

    ADS  Google Scholar 

  177. A.Q. Summerfield, A.S. Sidwell, T. Nelson: Auditory enhancement of changes in spectral amplitude, J. Acoust. Soc. Am. 81, 700–708 (1987)

    ADS  Google Scholar 

  178. A.S. Bregman, J. Abramson, P. Doehring, C.J. Darwin: Spectral integration based on common amplitude modulation, Percept. Psychophys. 37, 483–493 (1985)

    Google Scholar 

  179. J.W. Hall, J.H. Grose: Comodulation masking release and auditory grouping, J. Acoust. Soc. Am. 88, 119–125 (1990)

    ADS  Google Scholar 

  180. B.C.J. Moore, M.J. Shailer: Comodulation masking release as a function of level, J. Acoust. Soc. Am. 90, 829–835 (1991)

    ADS  Google Scholar 

  181. B.C.J. Moore, M.J. Shailer, M.J. Black: Dichotic interference effects in gap detection, J. Acoust. Soc. Am. 93, 2130–2133 (1993)

    ADS  Google Scholar 

  182. Q. Summerfield, J.F. Culling: Auditory segregation of competing voices: absence of effects of FM or AM coherence, Phil. Trans. R. Soc. Lond. B 336, 357–366 (1992)

    ADS  Google Scholar 

  183. M.F. Cohen, X. Chen: Dynamic frequency change among stimulus components: Effects of coherence on detectability, J. Acoust. Soc. Am. 92, 766–772 (1992)

    ADS  Google Scholar 

  184. M.H. Chalikia, A.S. Bregman: The perceptual segregation of simultaneous vowels with harmonic, shifted, and random components, Percept. Psychophys. 53, 125–133 (1993)

    Google Scholar 

  185. S. McAdams: Segregation of concurrent sounds. I.: Effects of frequency modulation coherence, J. Acoust. Soc. Am. 86, 2148–2159 (1989)

    ADS  Google Scholar 

  186. R.P. Carlyon: Discriminating between coherent and incoherent frequency modulation of complex tones, J. Acoust. Soc. Am. 89, 329–340 (1991)

    ADS  Google Scholar 

  187. R.P. Carlyon: Further evidence against an across-frequency mechanism specific to the detection of frequency modulation (FM) incoherence between resolved frequency components, J. Acoust. Soc. Am. 95, 949–961 (1994)

    ADS  Google Scholar 

  188. J. Lyzenga, B.C.J. Moore: Effect of FM coherence for inharmonic stimuli: FM-phase discrimination and identification of artificial double vowels, J. Acoust. Soc. Am. 117, 1314–1325 (2005)

    ADS  Google Scholar 

  189. C.M.H. Marin, S. McAdams: Segregation of concurrent sounds. II: Effects of spectral envelope tracing, frequency modulation coherence, and frequency modulation width, J. Acoust. Soc. Am. 89, 341–351 (1991)

    ADS  Google Scholar 

  190. S. Furukawa, B.C.J. Moore: Across-frequency processes in frequency modulation detection, J. Acoust. Soc. Am. 100, 2299–2312 (1996)

    ADS  Google Scholar 

  191. S. Furukawa, B.C.J. Moore: Dependence of frequency modulation detection on frequency modulation coherence across carriers: Effects of modulation rate, harmonicity and roving of the carrier frequencies, J. Acoust. Soc. Am. 101, 1632–1643 (1997)

    ADS  Google Scholar 

  192. S. Furukawa, B.C.J. Moore: Effect of the relative phase of amplitude modulation on the detection of modulation on two carriers, J. Acoust. Soc. Am. 102, 3657–3664 (1997)

    ADS  Google Scholar 

  193. R.P. Carlyon: Detecting coherent and incoherent frequency modulation, Hear. Res. 140, 173–188 (2000)

    Google Scholar 

  194. M. Kubovy, J.E. Cutting, R.M. McGuire: Hearing with the third ear: dichotic perception of a melody without monaural familiarity cues, Science 186, 272–274 (1974)

    ADS  Google Scholar 

  195. J.F. Culling: Auditory motion segregation: a limited analogy with vision, J. Exp. Psychol. Human Percept. Perform. 26, 1760–1769 (2000)

    Google Scholar 

  196. M.A. Akeroyd, B.C.J. Moore, G.A. Moore: Melody recognition using three types of dichotic-pitch stimulus, J. Acoust. Soc. Am. 110, 1498–1504 (2001)

    ADS  Google Scholar 

  197. T.M. Shackleton, R. Meddis: The role of interaural time difference and fundamental frequency difference in the identification of concurrent vowel pairs, J. Acoust. Soc. Am. 91, 3579–3581 (1992)

    ADS  Google Scholar 

  198. J.F. Culling, Q. Summerfield: Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay, J. Acoust. Soc. Am. 98, 785–797 (1995)

    ADS  Google Scholar 

  199. C.J. Darwin, R.W. Hukin: Auditory objects of attention: the role of interaural time differences, J. Exp. Psychol. Human Percept. Perform. 25, 617–629 (1999)

    Google Scholar 

  200. G.A. Miller, G.A. Heise: The trill threshold, J. Acoust. Soc. Am. 22, 637–638 (1950)

    ADS  Google Scholar 

  201. A.S. Bregman, J. Campbell: Primary auditory stream segregation and perception of order in rapid sequences of tones, J. Exp. Psychol. 89, 244–249 (1971)

    Google Scholar 

  202. L.P.A.S. van Noorden: Temporal coherence in the perception of tone sequences. Ph.D. Thesis (Eindhoven University of Technology, Eindhoven 1975)

    Google Scholar 

  203. L.P.A.S. van Noorden: Rhythmic fission as a function of tone rate, IPO Ann. Prog. Rep. 6, 9–12 (1971)

    Google Scholar 

  204. A.S. Bregman, G. Dannenbring: The effect of continuity on auditory stream segregation, Percept. Psychophys. 13, 308–312 (1973)

    Google Scholar 

  205. A.S. Bregman: Auditory streaming is cumulative, J. Exp. Psychol.: Human Percept. Perf. 4, 380–387 (1978)

    Google Scholar 

  206. W.L. Rogers, A.S. Bregman: An experimental evaluation of three theories of auditory stream segregation, Percept. Psychophys. 53, 179–189 (1993)

    Google Scholar 

  207. W.L. Rogers, A.S. Bregman: Cumulation of the tendency to segregate auditory streams: resetting by changes in location and loudness, Percept. Psychophys. 60, 1216–1227 (1998)

    Google Scholar 

  208. B.C.J. Moore, H. Gockel: Factors influencing sequential stream segregation, Acust. Acta Acust. 88, 320–333 (2002)

    Google Scholar 

  209. W.M. Hartmann, D. Johnson: Stream segregation and peripheral channeling, Music Percept. 9, 155–184 (1991)

    Google Scholar 

  210. P.G. Singh, A.S. Bregman: The influence of different timbre attributes on the perceptual segregation of complex-tone sequences, J. Acoust. Soc. Am. 102, 1943–1952 (1997)

    ADS  Google Scholar 

  211. J. Vliegen, B.C.J. Moore, A.J. Oxenham: The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task, J. Acoust. Soc. Am. 106, 938–945 (1999)

    ADS  Google Scholar 

  212. J. Vliegen, A.J. Oxenham: Sequential stream segregation in the absence of spectral cues, J. Acoust. Soc. Am. 105, 339–346 (1999)

    ADS  Google Scholar 

  213. P. Iverson: Auditory stream segregation by musical timbre: effects of static and dynamic acoustic attributes, J. Exp. Psychol.: Human Percept. Perf. 21, 751–763 (1995)

    Google Scholar 

  214. B. Roberts, B.R. Glasberg, B.C.J. Moore: Primitive stream segregation of tone sequences without differences in F0 or passband, J. Acoust. Soc. Am. 112, 2074–2085 (2002)

    ADS  Google Scholar 

  215. H. Gockel, R.P. Carlyon, C. Micheyl: Context dependence of fundamental-frequency discrimination: Lateralized temporal fringes, J. Acoust. Soc. Am. 106, 3553–3563 (1999)

    ADS  Google Scholar 

  216. W.J. Dowling: Rhythmic fission and perceptual organization, J. Acoust. Soc. Am. 44, 369 (1968)

    ADS  Google Scholar 

  217. W.J. Dowling: The perception of interleaved melodies, Cogn. Psychol. 5, 322–337 (1973)

    Google Scholar 

  218. D. Deutsch: Two-channel listening to musical scales, J. Acoust. Soc. Am. 57, 1156–1160 (1975)

    ADS  Google Scholar 

  219. D.E. Broadbent, P. Ladefoged: Auditory perception of temporal order, J. Acoust. Soc. Am. 31, 151–159 (1959)

    Google Scholar 

  220. R.M. Warren, C.J. Obusek, R.M. Farmer, R.P. Warren: Auditory sequence: confusion of patterns other than speech or music, Science N.Y. 164, 586–587 (1969)

    ADS  Google Scholar 

  221. R.M. Warren: Auditory temporal discrimination by trained listeners, Cogn. Psychol. 6, 237–256 (1974)

    Google Scholar 

  222. P.L. Divenyi, I.J. Hirsh: Identification of temporal order in three-tone sequences, J. Acoust. Soc. Am. 56, 144–151 (1974)

    ADS  Google Scholar 

  223. R. Cusack, B. Roberts: Effects of differences in timbre on sequential grouping, Percept. Psychophys. 62, 1112–1120 (2000)

    Google Scholar 

  224. K. Koffka: Principles of Gestalt Psychology (Harcourt and Brace, New York 1935)

    Google Scholar 

  225. C.J. Darwin, C.E. Bethell-Fox: Pitch continuity and speech source attribution, J. Exp. Psychol. Hum. Perc. Perform. 3, 665–672 (1977)

    Google Scholar 

  226. A.S. Bregman, A. Rudnicky: Auditory segregation: stream or streams?, J. Exp. Psychol.: Human Percept. Perf. 1, 263–267 (1975)

    Google Scholar 

  227. A.S. Bregman: The meaning of duplex perception: sounds as transparent objects. In: The Psychophysics of Speech Perception, ed. by M.E.H. Schouten (Martinus Nijhoff, Dordrecht 1987)

    Google Scholar 

  228. T. Houtgast: Psychophysical evidence for lateral inhibition in hearing, J. Acoust. Soc. Am. 51, 1885–1894 (1972)

    ADS  Google Scholar 

  229. W.R. Thurlow: An auditory figure-ground effect, Am. J. Psychol. 70, 653–654 (1957)

    Google Scholar 

  230. R.M. Warren, C.J. Obusek, J.M. Ackroff: Auditory induction: perceptual synthesis of absent sounds, Science 176, 1149–1151 (1972)

    ADS  Google Scholar 

  231. V. Ciocca, A.S. Bregman: Perceived continuity of gliding and steady-state tones through interrupting noise, Percept. Psychophys. 42, 476–484 (1987)

    Google Scholar 

  232. G.A. Miller, J.C.R. Licklider: The intelligibility of interrupted speech, J. Acoust. Soc. Am. 22, 167–173 (1950)

    ADS  Google Scholar 

  233. D. Dirks, D. Bower: Effects of forward and backward masking on speech intelligibility, J. Acoust. Soc. Am. 47, 1003–1008 (1970)

    ADS  Google Scholar 

  234. R.M. Warren: Perceptual restoration of missing speech sounds, Science 167, 392–393 (1970)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C.J. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Moore, B.C. (2014). Psychoacoustics. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_13

Download citation

Publish with us

Policies and ethics