Skip to main content

Weak Hierarchies: A Central Clustering Structure

  • Chapter
  • First Online:
Clusters, Orders, and Trees: Methods and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 92))

Abstract

The k-weak hierarchies, for k ≥ 2, are the cluster collections such that the intersection of any (k + 1) members equals the intersection of some k of them. Any cluster collection turns out to be a k-weak hierarchy for some integer k. Weak hierarchies play a central role in cluster analysis in several aspects: they are defined as the 2-weak hierarchies, so that they not only extend directly the well-known hierarchical structure, but they are also characterized by the rank of their closure operator which is at most 2. The main aim of this chapter is to present, in a unique framework, two distinct weak hierarchical clustering approaches. The first one is based on the idea that, since clusters must be isolated, it is natural to determine them as weak clusters defined by a positive weak isolation index. The second one determines the weak subdominant quasi-ultrametric of a given dissimilarity, and thus an optimal closed weak hierarchy by means of the bijection between quasi-ultrametrics and (indexed) closed weak hierarchies. Furthermore, we highlight the relationship between weak hierarchical clustering and formal concepts analysis, through which concept extents appear to be weak clusters of some multiway dissimilarity functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The hierarchical structure is a highly versatile structure, as attested by hierarchies in cluster analysis, ontologies in knowledge representation, decision trees in supervised classification and by tree-based data structures such as PQ-trees.

References

  1. Bandelt, H.-J.: Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies. In: Mathematisches Seminar. Universität Hamburg, Germany (1992)

    Google Scholar 

  2. Bandelt, H.-J., Dress, A.W.M.: Weak hierarchies associated with similarity measures: an additive clustering technique. Bull. Math. Biol. 51, 113–166 (1989)

    MathSciNet  Google Scholar 

  3. Barbut, M., Monjardet, B.: Ordre et classification. Hachette, Paris (1970)

    MATH  Google Scholar 

  4. Batbedat, A.: Les dissimilarités médas ou arbas. Statistique et Analyse des Données 14, 1–18 (1988)

    MathSciNet  Google Scholar 

  5. Batbedat, A.: Les isomorphismes H T S et H T E (après la bijection de Benzécri/Johnson) (première partie). Metron 46, 47–59 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Benzécri, J.-P.: L’Analyse des données: la Taxinomie. Dunod, Paris (1973)

    MATH  Google Scholar 

  7. Bertrand, P.: Set systems and dissimilarities. Eur. J. Comb. 21, 727–743 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bertrand, P., Brucker, F.: On lower-maximal paired-ultrametrics. In: Brito, P., Bertrand, P., Cucumel, G., Carvalho, F.D. (eds.) Selected Contributions in Data Analysis and Classification, pp. 455–464. Springer, Berlin (2007)

    Chapter  Google Scholar 

  9. Bertrand, P., Diday, E.: A visual representation of the compatibility between an order and a dissimilarity index: the pyramids. Comput. Stat. Q. 2, 31–42 (1985)

    MATH  Google Scholar 

  10. Bertrand, P., Janowitz, M.F.: Pyramids and weak hierarchies in the ordinal model for clustering. Discrete Appl. Math. 122, 55–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. XXV, 3rd edn. American Mathematical Society, Providence (1967)

    Google Scholar 

  12. Brito, P.: Order structure of symbolic assertion objects. IEEE Trans. Knowl. Data Eng. 6(5), 830–835 (1994)

    Article  Google Scholar 

  13. Brucker, F.: Sub-dominant theory in numerical taxonomy. Discrete Appl. Math. 154, 1085–1099 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Daniel-Vatonne, M.-C., Higuera, C.D.L.: Les termes: un modèle algébrique de repésentation et de structuration de données symboliques. Math. Inf. Sci. Hum. 122, 41–63 (1993)

    MATH  Google Scholar 

  15. Diatta, J.: A relation between the theory of formal concepts and multiway clustering. Pattern Recognit. Lett. 25, 1183–1189 (2004)

    Article  Google Scholar 

  16. Diatta, J.: Description-meet compatible multiway dissimilarities. Discrete Appl. Math. 154, 493–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Diatta, J., Fichet, B.: From Apresjan hierarchies and Bandelt-Dress weak hierarchies to quasi-hierarchies. In: Diday, E., Lechevalier, Y., Schader, M., Bertrand, P., Burtschy, B. (eds.) New Approaches in Classification and Data Analysis, pp. 111–118. Springer, Berlin (1994)

    Chapter  Google Scholar 

  18. Diatta, J., Fichet, B.: Quasi-ultrametrics and their 2-ball hypergraphs. Discrete Math. 192, 87–102 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Diatta, J., Ralambondrainy, H.: The conceptual weak hierarchy associated with a dissimilarity measure. Math. Soc. Sci. 44, 301–319 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Diday, E.: Une représentation visuelle des classes empiétantes: les pyramides. Tech. Rep. 291, INRIA, France (1984)

    Google Scholar 

  21. Domenach, F., Leclerc, B.: On the roles of Galois connections in classification. In: Schwaiger, O.O.M. (ed.) Explanatory Data Analysis in Empirical Research, pp. 31–40. Springer, Berlin (2002)

    Google Scholar 

  22. Durand, C., Fichet, B.: One-t-one correspondences in pyramidal representation: a unified approach. In: Bock, H.H. (ed.) Classification and Related Methods of Data Analysis, pp. 85–90. North-Holland, Amsterdam (1988)

    Google Scholar 

  23. Fichet, B.: Data analysis: geometric and algebraic structures. In: Prohorov, Y.A., Sazonov, V.V. (eds.) Proceedings of the First World Congress of the Bernoulli Society (Tachkent, 1986), vol. 2, pp. 123–132. V.N.U. Science Press, Utrecht (1987)

    Google Scholar 

  24. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Conceptual Structures: Broadening the Base. Lecture Notes in Computer Science, vol. 2120, pp. 129–142. Springer, Berlin (2001)

    Google Scholar 

  25. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)

    Article  Google Scholar 

  26. Mirkin, B., Muchnik, I.: Combinatorial optimization in clustering. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 261–329. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  27. Polaillon, G.: Interpretation and reduction of Galois lattices of complex data. In: Rizzi, A., Vichi, M., Bock, H.-H. (eds.) Advances in Data Science and Classification, pp. 433–440. Springer, Berlin (1998)

    Chapter  Google Scholar 

  28. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht/Boston (1982)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bertrand, P., Diatta, J. (2014). Weak Hierarchies: A Central Clustering Structure. In: Aleskerov, F., Goldengorin, B., Pardalos, P. (eds) Clusters, Orders, and Trees: Methods and Applications. Springer Optimization and Its Applications, vol 92. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0742-7_14

Download citation

Publish with us

Policies and ethics