Skip to main content

Transitioning Discoveries from Cancer Genomics Research Laboratories into Pathology Practice

  • Chapter
  • First Online:
Genomic Applications in Pathology

Abstract

Genomic biomarkers are increasingly being used for detection of cancer, for recognizing early disease recurrence, or to provide crucial molecular findings essential for the use of novel classes of targeting therapies. Although there is considerable enthusiasm for the use of the discoveries of cancer genomics for personalized medicine in clinical practice, the number of new classes of biomarkers incorporated into cancer diagnosis and treatment remains surprisingly low. In this chapter we describe how novel laboratory approaches and research discoveries usually move into pathology practice, and we consider why uptake of genomic biomarkers in clinical medicine has been so slow. We illustrate this by describing some of the genomic biomarkers and genetic tests that are being successfully used in pathology practice now. We draw attention to some of the challenges faced in delivering practice-changing discoveries; and discuss the potential impact of genomic biomarkers on the design of new clinical trials. Finally, we review current guidelines and recommendations for moving a successful biomarker from the pathology research laboratory into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101:1446–52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brooks JD. Translational genomics: the challenge of developing cancer biomarkers. Genome Res. 2012;22:183–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483:531–3.

    Article  PubMed  CAS  Google Scholar 

  4. Strategy for Patient-Oriented Research-CIHR. http://www.cihr-irsc.gc.ca/e/41204.html. Accessed 10 Feb 2013.

  5. Ziegler A, Koch A, Krockenberger K, et al. Personalized medicine using DNA biomarkers: a review. Human Genetics. 2012;131:1627–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Henney AM. The promise and challenge of personalized medicine: aging populations, complex diseases, and unmet medical need. Croat Med J. 2012;53:207–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Madu CO, Lu Y. Novel diagnostic biomarkers for prostate cancer. J Cancer. 2010;1:150–77.

    Article  PubMed  PubMed Central  Google Scholar 

  8. NCI dictionary of cancer terms-National Cancer Institute. http://www.cancer.gov/dictionary?cdrid=45618. Accessed 10 Feb 2013.

  9. Foundation for the National Institutes of Health. http://www.fnih.org/work/key-initiatives/biomarkers-consortium. Accessed 10 Feb 2013.

  10. Rao AR, Motiwala HG, Karim OM. The discovery of prostate-specific antigen. BJU Int. 2008;101:5–10. doi:10.1111/j.1464-410X.2007.07138.x.

    Article  PubMed  CAS  Google Scholar 

  11. Barry MJ. PSA testing for early diagnosis of prostate cancer. N Engl J Med. 2001;344:1373–7.

    Article  PubMed  CAS  Google Scholar 

  12. Haese A, de la Taille A, van Poppel H, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54:1081–8.

    Article  PubMed  Google Scholar 

  13. Kirby RS, Fitzpatrick JM, Irani J. Prostate cancer diagnosis in the new millennium: strengths and weaknesses of prostate specific antigen and the discovery and clinical evaluation of prostate cancer gene 3 (PCA3). BJU Int. 2009;103:441–5.

    Article  PubMed  Google Scholar 

  14. Day JR, Jost A, Reynolds MA. PCA3: from basic molecular science to the clinical lab. Cancer Lett. 2011;301:1–6.

    Article  PubMed  CAS  Google Scholar 

  15. Laxman B, Morris DS, Yu J, et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68:645–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Jamaspishvili T, Kral M, Khomeriki I, et al. Quadriplex model enhances urine-based detection of prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:354–60.

    Article  PubMed  CAS  Google Scholar 

  17. Canadian Task Force on Preventive Health Care, Pollock S, Dunfield L, et al. CMAJ. 2013;185:35–45.

    Article  Google Scholar 

  18. Kiba T, Inamoto T, Nishimura T, et al. The reversal of recurrence hazard rate between ER positive and negative breast cancer patients with axillary lymph node dissection (pathological stage I-III) 3 years after surgery. BMC Cancer. 2008;8:323.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nossov V, Amneus M, Su F, et al. The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol. 2008;199:215–23.

    Article  PubMed  CAS  Google Scholar 

  20. Nustad K, Bast Jr RC, Brien TJ, et al. Specificity and affinity of 26 monoclonal antibodies against the CA 125 antigen: first report from the ISOBM TD-1 workshop. Int Soc Oncodev Biol Med. 1996;17:196–219.

    Article  CAS  Google Scholar 

  21. Gupta D, Lis CG. Role of CA125 in predicting ovarian cancer survival – a review of the epidemiological literature. J Ovarian Res. 2009;2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gennari A, Sormani MP, Pronzato P, et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized clinical trials. J Natl Cancer Inst. 2008;100:14–20.

    Article  PubMed  CAS  Google Scholar 

  23. Hayes DF, Thor AD, Dressler LG, et al. HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med. 2007;357:1496–506.

    Article  PubMed  CAS  Google Scholar 

  24. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  PubMed  CAS  Google Scholar 

  25. Simon R. Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Per Med. 2010;7:33–47.

    Article  PubMed  PubMed Central  Google Scholar 

  26. UnitedHealthcare®. Medical Policy 2012; PDF. Accessed 18 Feb 2013.

    Google Scholar 

  27. Tohami T, Nagler A, Amariglio N. Laboratory tools for diagnosis and monitoring response in patients with chronic myeloid leukemia. Isr Med Assoc J. 2012;14:501–7.

    PubMed  Google Scholar 

  28. Leong AS, Zhuang Z. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology. 2011;78:99–114.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kim ST, Sung JS, Jo UH, et al. Can mutations of EGFR and KRAS in serum be predictive and prognostic markers in patients with advanced non-small cell lung cancer (NSCLC)? Med Oncol. 2013;30:328.

    Article  PubMed  Google Scholar 

  30. Laszlo L. Predictive and prognostic factors in the complex treatment of patients with colorectal cancer. Magy Onkol. 2010;54:383–94.

    Article  PubMed  Google Scholar 

  31. Trevino V, Falciani F, Barrera-Saldana HA. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med. 2007;13:527–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Howie B, Fuchsberger C, Stephens M, et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Hicks C, Asfour R, Pannuti A, et al. An integrative genomics approach to biomarker discovery in breast cancer. Cancer Inform. 2011;10:185–204.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le Marchand L, Wilkens LR. Design considerations for genomic association studies: importance of gene-environment interactions. Cancer Epidemiol Biomarkers Prev. 2008;17:263–7.

    Article  PubMed  Google Scholar 

  35. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  PubMed  CAS  Google Scholar 

  36. Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol. 2009;27:455–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Fertig EJ, Slebos R, Chung CH. Application of genomic and proteomic technologies in biomarker discovery. Am Soc Clin Oncol Educ Book. 2012;32:377–382.

    Google Scholar 

  38. Schrijver I, Aziz N, Farkas DH, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn. 2012;14:525–40.

    Article  PubMed  CAS  Google Scholar 

  39. Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. College of American Pathologists In Vitro Diagnostic Multivariate Index Assays (IVDMIA). http://www.cap.org/apps/cap.portal?_nfpb=true&cntvwrPtlt_actionOverride=%2Fportlets%2FcontentViewer%2Fshow&cntvwrPtlt%7BactionForm.contentReference%7D=committees%2Ftechnology%2Fivdmia.html&_pageLabel=cntvwr. Accessed 18 Feb 2013.

  41. Oncotype DX official website. http://www.oncotypedx.com/en-US/Colon/HealthcareProfessionals/RecurrenceRisk/ScoreResult. Accessed 18 Feb 2013.

  42. Venook AP, Niedzwiecki D, Lopatin M. Validation of a 12-gene colon cancer recurrence score (RS) in patients (pts) with stage II colon cancer (CC) from CALGB 9581. Abstract # 3518. ASCO annual meeting. Chicago, IL, June 2011.

    Google Scholar 

  43. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11:66–73.

    Article  Google Scholar 

  44. Health Service Executive Website. Oncotype DX to be made available in all designated cancer centres. http://hse.ie/eng/services/list/5/nccp/news/Oncotype%20DX%20to%20be%20made%20available%20in%20all%20designated%20cancer%20centres.html.

  45. Massie CE, Mills IG. Mapping protein-DNA interactions using ChIP-sequencing. Methods Mol Biol. 2012;809:157–73.

    Article  PubMed  CAS  Google Scholar 

  46. Bayani J, Squire JA. Application and interpretation of FISH in biomarker studies. Cancer Lett. 2007;249:97–109.

    Article  PubMed  CAS  Google Scholar 

  47. Penault-Llorca F, Bilous M, Dowsett M, et al. Emerging technologies for assessing Her2 amplification. Am J Clin Pathol. 2009;132:539–48.

    Article  PubMed  CAS  Google Scholar 

  48. Mass RD, Press MF, Anderson S, et al. Evaluation of clinical outcomes according to Her2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer. 2005;6:240–6.

    Article  PubMed  Google Scholar 

  49. Davis LM, Harris C, Tang L, et al. Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn. 2007;9:327–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Yoshimoto M, Cutz JC, Nuin PA, et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68 % of primary prostate cancer and 23 % of highgrade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet. 2006;169:128–37.

    Article  PubMed  CAS  Google Scholar 

  51. Yoshimoto M, Cunha IW, Coudry RA, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97:678–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Squire JA. TMPRSS2-ERG and PTEN loss in prostate cancer. Nat Genet. 2009;41:509–10.

    Article  PubMed  CAS  Google Scholar 

  53. Bismar TA, Yoshimoto M, Vollmer RT, et al. PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer. BJU Int. 2011;107:477–85.

    Article  PubMed  Google Scholar 

  54. Sholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol. 2013;8:322–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Guideline from the College of American Pathologists (CAP), International Association for the Study of Lung Cancer (IASLC), Association for Molecular Pathology (AMP). Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors. https://www.iaslc.org/sites/default/files/wysiwyg-assets/cap_iaslc_amp_webcast_powerpointv9_1.pdf.

  56. Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn. 2009;9:187–97.

    Article  PubMed  CAS  Google Scholar 

  57. Bartley PA, Ross DM, Latham S. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32:222–8.

    Article  Google Scholar 

  58. Ross DM, Branford S, Seymour JF, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24:1719–24.

    Article  PubMed  CAS  Google Scholar 

  59. Goh HG, Lin M, Fukushima T, et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk Lymphoma. 2011;52:896–904.

    Article  PubMed  CAS  Google Scholar 

  60. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77.

    PubMed  CAS  Google Scholar 

  61. Cantara S, Cappezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation defect in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9.

    Article  PubMed  CAS  Google Scholar 

  62. Fu Q, Zhu J, Van Eyk JE. Comparison of multiplex immunoassay platforms. Clin Chem. 2010;56:314–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Choi HJ, Kim HR, Shin MG. The author response: diagnostic standardization of leukemia fusion gene detection system using multiplex reverse transcriptase-polymerase chain reaction in Korea. J Korean Med Sci. 2011;26:1401.

    Article  CAS  PubMed Central  Google Scholar 

  64. King RL, Naghashpour M, Watt CD, et al. A comparative analysis of molecular genetic and conventional cytogenetic detection of diagnostically important translocations in more than 400 cases of acute leukemia, highlighting the frequency of false-negative conventional cytogenetics. Am J Clin Pathol. 2011;135:921–8.

    Article  PubMed  Google Scholar 

  65. Dancey JE, Bedard PL, Onetto N, et al. The genetic basis for cancer treatment decisions. Cell. 2012;148:409–20.

    Article  PubMed  CAS  Google Scholar 

  66. Holbein ME. Understanding FDA regulatory requirements for investigational new drug applications for sponsor-investigators. J Investig Med. 2009;57:688–94.

    PubMed  Google Scholar 

  67. Sargent DJ, Conley BA, Allegra C, et al. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–7.

    Article  PubMed  Google Scholar 

  68. Pusztai L, Broglio K, Andre F, et al. Effect of molecular disease subsets on disease-free survival in randomized adjuvant chemotherapy trials for estrogen-receptor positive breast cancer. J Clin Oncol. 2008;26:4679–83.

    Article  PubMed  Google Scholar 

  69. Simon R. Advances in clinical trial designs for predictive biomarker discovery and validation. Curr Breast Cancer Rep. 2009;1:216–21.

    Article  Google Scholar 

  70. Wang SJ, O’Neill RT, Hung HM. Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset. Pharm Stat. 2007;6:227–44.

    Article  PubMed  Google Scholar 

  71. Liu A, Li Q, Yu KF, et al. A threshold sample-enrichment approach in a clinical trial with heterogeneous subpopulations. Clin Trials. 2010;7:537–45.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Freidlin B, Simon R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin Cancer Res. 2005;11:7872–8.

    Article  PubMed  CAS  Google Scholar 

  73. McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med. 2011;364:340–50.

    Article  PubMed  CAS  Google Scholar 

  74. Srivastava SS, Kramer BS. Early detection cancer research network. Lab Invest. 2000;80:1147–8.

    Article  PubMed  CAS  Google Scholar 

  75. Zerhouni EA, Sanders CA, von Eschenbach AC. The Biomarkers Consortium: public and private sectors working in partnership to improve the public health. Oncologist. 2007;12:250–2.

    Article  PubMed  Google Scholar 

  76. Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem. 2003;49:1–6.

    Article  PubMed  CAS  Google Scholar 

  77. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2006;97:1180–4.

    Article  Google Scholar 

  78. Hayes D, Ethier S, Lippman M. New guidelines for reporting tumor marker studies in breast cancer research and treatment: REMARK. Breast Cancer Res Treat. 2006;100:237–8.

    Article  PubMed  Google Scholar 

  79. Keedy VL, Temin S, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011;29:2121–7.

    Article  PubMed  Google Scholar 

  80. Hayes DF, Bast RC, Desch CE. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst. 1996;88:1456–66.

    Article  PubMed  CAS  Google Scholar 

  81. Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313–27.

    Article  PubMed  CAS  Google Scholar 

  82. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–310.

    Article  PubMed  CAS  Google Scholar 

  83. Freidlin B, McShane LM, Korn EL. Randomized clinical trials with biomarkers: design issues. J Natl Cancer Inst. 2010;102:152–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Burke W, Atkins D, Gwinn M, et al. Genetic test evaluation: information needs of clinicians, policy makers, and the public. Am J Epidemiol. 2002;156:311–8.

    Article  PubMed  Google Scholar 

  85. Teutsch SM, Bradley LA, Palomaki GE, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet Med. 2009;11:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chou R, Croswell JM, Dana T, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:762–71.

    Article  PubMed  Google Scholar 

  87. Prensner JR, Rubin MA, Wei JT, et al. Chinnaiyan. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4:127rv3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jamaspishvili, T., Squire, J.A. (2015). Transitioning Discoveries from Cancer Genomics Research Laboratories into Pathology Practice. In: Netto, G., Schrijver, I. (eds) Genomic Applications in Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0727-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0727-4_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0726-7

  • Online ISBN: 978-1-4939-0727-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics