Skip to main content

Application of Shotgun Proteomics for Discovery-Driven Protein–Protein Interaction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1156))

Abstract

Affinity purification of protein complexes and identification of co-purified proteins by mass spectrometry is a powerful method to discover novel protein–protein interactions. Application of this method to the study of biological systems often requires the ability to process a large number of samples. Hence, there is great need to generate proteomic workflows compatible with large-scale studies. The major goal of this protocol is to present a fast, reliable, and scalable method to characterize protein complexes by mass spectrometry to overcome the limitations of conventional geLC-MS/MS or MudPIT protocols. This method was successfully employed for the discovery and characterization of novel protein complexes in cultured yeast, mammalian cells, and mice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4(10):807–815

    Article  PubMed  Google Scholar 

  2. Zubarev R, Mann M (2007) On the proper use of mass accuracy in proteomics. Mol Cell Proteomics 6(3):377–381

    Article  CAS  PubMed  Google Scholar 

  3. Maliga Z, Junqueira M, Toyoda Y, Ettinger A, Mora-Bermúdez F, Klemm RW, Vasilj A, Guhr E, Ibarlucea-Benitez I, Poser I et al (2013) A genomic toolkit to investigate kinesin and myosin motor function in cells. Nat Cell Biol 15(3):325–334

    Article  CAS  PubMed  Google Scholar 

  4. Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H et al (2009) A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 4(5):403–415

    Article  CAS  PubMed  Google Scholar 

  5. Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A, Mann M, Neugebauer KM, Buchholz F (2011) A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol 13(7):809–818

    Article  CAS  PubMed  Google Scholar 

  6. Maffini S, Maia AR, Manning AL, Maliga Z, Pereira AL, Junqueira M, Shevchenko A, Hyman A, Yates JR, Galjart N et al (2009) Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 19(18):1566–1572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Matos J, Lipp JJ, Bogdanova A, Guillot S, Okaz E, Junqueira M, Shevchenko A, Zachariae W (2008) Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135(4):662–678

    Article  CAS  PubMed  Google Scholar 

  8. Słabicki M, Theis M, Krastev DB, Samsonov S, Mundwiller E, Junqueira M, Paszkowski-Rogacz M, Teyra J, Heninger AK, Poser I et al (2010) A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 8(6):e1000408

    Article  PubMed Central  PubMed  Google Scholar 

  9. Theis M, Slabicki M, Junqueira M, Paszkowski-Rogacz M, Sontheimer J, Kittler R, Heninger AK, Glatter T, Kruusmaa K, Poser I et al (2009) Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division. EMBO J 28(10):1453–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    Article  CAS  PubMed  Google Scholar 

  11. Shevchenko A, Roguev A, Schaft D, Buchanan L, Habermann B, Sakalar C, Thomas H, Krogan NJ, Shevchenko A, Stewart AF (2008) Chromatin central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9(11):R167

    Article  PubMed Central  PubMed  Google Scholar 

  12. Junqueira M, Spirin V, Santana Balbuena T, Waridel P, Surendranath V, Kryukov G, Adzhubei I, Thomas H, Sunyaev S, Shevchenko A (2008) Separating the wheat from the chaff: unbiased filtering of background tandem mass spectra improves protein identification. J Proteome Res 7(8):3382–3395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gentzel M, Kocher T, Ponnusamy S, Wilm M (2003) Preprocessing of tandem mass spectrometric data to support automatic protein identification. Proteomics 3(8):1597–1610

    Article  CAS  PubMed  Google Scholar 

  14. Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert FM, Vandermoere F, Morrice NA, Swift S, Rothbauer U, Leonhardt H et al (2008) Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183(2):223–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Schirle M, Heurtier MA, Kuster B (2003) Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2(12):1297–1305

    Article  CAS  PubMed  Google Scholar 

  16. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574

    Article  CAS  PubMed  Google Scholar 

  17. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Muller M (2007) SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7(19):3470–3480

    Article  CAS  PubMed  Google Scholar 

  18. Rinner O, Mueller LN, Hubalek M, Muller M, Gstaiger M, Aebersold R (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25(3):345–352

    Article  CAS  PubMed  Google Scholar 

  19. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32(Database issue):D115–D119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW et al (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5(5):409–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schaefer H, Chervet JP, Bunse C, Joppich C, Meyer HE, Marcus K (2004) A peptide preconcentration approach for nano-high-performance liquid chromatography to diminish memory effects. Proteomics 4(9):2541–2544

    Article  CAS  PubMed  Google Scholar 

  22. Cheeseman IM, Desai A (2005) A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE 2005(266):l1

    Google Scholar 

  23. Zhang Y, Muyrers JP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18(12):1314–1317

    Article  CAS  PubMed  Google Scholar 

  24. Mitulovic G, Stingl C, Smoluch M, Swart R, Chervet JP, Steinmacher I, Gerner C, Mechtler K (2004) Automated, on-line two-dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests. Proteomics 4(9):2545–2557

    Article  CAS  PubMed  Google Scholar 

  25. Waridel P, Frank A, Thomas H, Surendranath V, Sunyaev S, Pevzner P, Shevchenko A (2007) Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing. Proteomics 7(14):2318–2329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.M. was supported by the Sixth Framework Programme Integrated Project Mitocheck (LSHG-CT-2004-503464) and the Max Planck Society. M.J. was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant no. 483642/2012-6 MCT/CNPq—Universal. The authors acknowledge Frank Buchholz, Andrej Shevchenko, Anthony Hyman, Mirko Theis, and Yusuke Toyoda for previous collaborations and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magno Junqueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Goto-Silva, L., Maliga, Z., Slabicki, M., Murillo, J.R., Junqueira, M. (2014). Application of Shotgun Proteomics for Discovery-Driven Protein–Protein Interaction. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0685-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0684-0

  • Online ISBN: 978-1-4939-0685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics