Skip to main content

Oxidative Stress in Kawasaki Disease

  • Chapter
  • First Online:
Studies on Pediatric Disorders

Abstract

There exists a close association between inflammation and oxidative stress. Further, oxidative stress plays a role in the pathology of inflammation-based Kawasaki disease. An excessive in vivo production of reactive oxygen species results in oxidative stress load, which triggers a never-ending vicious spiral of inflammatory reactions and reactive oxygen metabolites. This forms the basis for acute stage Kawasaki disease. Kawasaki disease involves multiple intricately connected inflammatory reactions activated via a cytokine cascade. Features of Kawasaki disease suggest an infectious cause; however, this has not been clarified yet.

Although inflammation in the blood vessels and oxidative stress can be rapidly controlled by acute medical treatment, both conditions may persist and manifest in many forms over long periods. This has been identified in recent years as a problem in the chronic phase of Kawasaki disease. Further, both vascular inflammation and oxidative stress constantly inflict damage to the blood vessels, and are widely speculated to increase the risk of arteriosclerosis. The current discussion focuses on whether these features have implications in Kawasaki disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAP:

Biological antioxidant potential

CRP:

C-reactive protein

EDRF:

Endothelium-derived relaxing factor

eNOS:

Endothelial NO synthase

%FMD:

Endothelium-dependent vasodilation response

IL-6:

Interleukin-6

iNOS:

Inducible NO synthase

IVIG:

Intravenous immunoglobulin

KD:

Kawasaki disease

NADH/NADPH:

Nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate

NE:

Neutrophil elastase

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

NOx:

Nitrogen oxides

ROM:

Reactive oxygen metabolites

ROS:

Reactive oxygen species

TAT:

Thrombin-antithrombin complex

TNF-α:

Tumor necrosis factor-α

References

  1. Kawasaki T (1967) Acute febrile muco-cutaneous lymph node syndrome in young children with unique digital desquamation: clinical observation of 50 cases. Jpn J Allergol 16:178–222 (in Japanese)

    CAS  Google Scholar 

  2. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  CAS  PubMed  Google Scholar 

  3. Sies H (1985) Oxidative stress: inductor remarks. In: Sies H (ed) Oxidative stress. Academic, London, pp 1–8

    Chapter  Google Scholar 

  4. Sies H (2000) What is oxidative stress? In: Kency JF Jr (ed) Oxidative stress and vascular disease. Kluwer Academic Publishers, Boston, pp 1–8

    Chapter  Google Scholar 

  5. Phan SH, Gannon DE, Varani J, Ryan US, Ward PA (1989) Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils. Am J Pathol 134:1201–1211

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Furukawa S, Matsubara T, Jujoh K, Yone K, Sugawara T, Sasaki K, Kato H, Yabuta K (1988) Peripheral blood monocyte/macrophages and serum tumor necrosis factor in Kawasaki disease. Clin Immunol Immunopathol 48:247–251

    Article  CAS  PubMed  Google Scholar 

  7. Furukawa S, Matsubara T, Yone K, Hirano Y, Okumura K, Yabuta K (1992) Kawasaki disease differs from anaphylactoid purpura and measles with regard to tumour necrosis factor-alpha and interleukin 6 in serum. Eur J Pediatr 151:44–47

    Article  CAS  PubMed  Google Scholar 

  8. Lin CY, Lin CC, Hwang B, Chiang B (1992) Serial changes of serum interleukin-6, interleukin-8, and tumor necrosis factor alpha among patients with Kawasaki disease. J Pediatr 21:924–926

    Article  Google Scholar 

  9. Imano Y, Harada K, Okuni M, Kimoto K, Takeuchi S, Sakurabayashi I (1987) Immunoreactive polymorphonuclear leukocyte elastase in complex with alpha 1-antitrypsin in Kawasaki disease. Acta Paediatr Jpn 29:202–205

    Article  Google Scholar 

  10. Buttery LDK, Springall DR, Chester AH, Evans TJ, Standfield N, Parums DV, Yacoub MH, Polak JM (1996) Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest 75:77–85

    CAS  PubMed  Google Scholar 

  11. Yahata T, Suzuki C, Hamaoka A, Fujii M, Hamaoka K (2011) Dynamics of reactive oxygen metabolites and biological antioxidant potential in the acute stage of Kawasaki disease. Circ J 75:2453–2459

    Article  CAS  PubMed  Google Scholar 

  12. JCS Joint Working Group (2010) Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008)—digest version. Circ J 74:1989–2020

    Article  Google Scholar 

  13. Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, Kato T, Hara T, Hamaoka K, Ogawa S, Miura M, Nomura Y, Fuse S, Ichida F, Seki M, Fukazawa R, Ogawa C, Furuno K, Tokunaga H, Takatsuki S, Hara S, Morikawa A (2012) RAISE study group investigators. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomized, open-label, blinded-endpoints trial. Lancet 28:1613–1620

    Article  Google Scholar 

  14. Weiss JE, Eberhard BA, Chowdhury D, Gottlieb BS (2004) Infliximab as a novel therapy for refractory Kawasaki disease. J Rheumatol 31:808–810

    PubMed  Google Scholar 

  15. Burns JC, Mason WH, Hauger SB, Janai H, Bastian JF, Wohrley JD, Balfour I, Shen CA, Michel ED, Shulman ST, Melish ME (2005) Infliximab treatment for refractory Kawasaki disease. J Pediatr 146:662–667

    Article  CAS  PubMed  Google Scholar 

  16. Sugimura T, Kato H, Inoue O, Fukuda T, Sato N, Ishii M, Takagi J, Akagi T, Maeno Y, Kawano T (1994) Intravascular ultrasound of coronary arteries in children. Assessment of the wall morphology and the lumen after Kawasaki disease. Circulation 89:258–265

    Article  CAS  PubMed  Google Scholar 

  17. Niboshi A, Hamaoka K, Sakata K, Yamaguchi N (2008) Endothelial dysfunction in adult patients with a history of Kawasaki disease. Eur J Pediatr 167:189–196

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi K, Oharaseki T, Naoe S (2001) Pathological study of postcoronary arteritis in adolescents and young adults: with reference to the relationship between sequelae of Kawasaki disease and atherosclerosis. Pediatr Cardiol 22:138–142

    Article  CAS  PubMed  Google Scholar 

  19. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  20. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  CAS  PubMed  Google Scholar 

  21. Niboshi A, Hamaoka K (2006) Recent advances in free radical biology and medicine—oxidative stress and vascular injury of Kawasaki disease. J Clin Exp Med (Tokyo) 64:265–269 (in Japanese)

    Google Scholar 

  22. Liu Y, Onouchi Z, Sakata K, Ikuta K (1996) An experimental study on the role of smooth muscle cells in the pathogenesis of atherosclerosis of the coronary arteritis. J Jpn Pediatr Soc 100:1453–1458 (in Japanese)

    Google Scholar 

  23. Bruno RS, Pernomian L, Bendhack LM (2012) Contribution of oxidative stress to endothelial dysfunction in hypertension. Front Physiol 3:441

    Article  Google Scholar 

  24. Stephens JW, Khanolkar MP, Bain SC (2009) The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis 202:321–329

    Article  CAS  PubMed  Google Scholar 

  25. Araujo FB, Barbosa DS, Hsin CY, Maranhao RC, Abdalla DS (1995) Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis 117:61–71

    Article  CAS  PubMed  Google Scholar 

  26. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJ 2nd (1995) Increased in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332:1198–1203

    Article  CAS  PubMed  Google Scholar 

  28. Ferrieres J (2004) The French paradox: lessons for other countries. Heart 90:170–211

    Article  Google Scholar 

  29. Pratlco D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA (1998) Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 4:1189–1192

    Article  Google Scholar 

  30. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systemic review and meta-analysis. JAMA 297:842–857

    Article  CAS  PubMed  Google Scholar 

  31. Baillie JK, Thompson AA, Irving JB, Bates MG, Sutherland AI, Macnee W, Maxwell SR, Webb DJ (2009) Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial. QJM 102:341–348

    Article  CAS  PubMed  Google Scholar 

  32. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury part 1: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hamaoka M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yahata, T., Hamaoka, K. (2014). Oxidative Stress in Kawasaki Disease. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_16

Download citation

Publish with us

Policies and ethics