Skip to main content

The DNA Methylation Signature of Smoking: An Archetype for the Identification of Biomarkers for Behavioral Illness

  • Chapter
  • First Online:
Genes and the Motivation to Use Substances

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 61))

Abstract

Smoking is perhaps the foremost public health challenge in the USA and in the world. In a series of rapidly emerging studies, we and others have demonstrated that cigarette smoking is associated with changes in the DNA methylation signature of peripheral blood cells. The changes associated with this type of substance use are both dose and time dependent. These changes in DNA methylation are also accompanied by changes in gene transcription and protein expression whose patterns are furthermore indicative of increased vulnerability to other forms of complex illness. In the past, our efforts to translate this knowledge into actionable information have been stymied by a lack of methods through which to systematically assess these changes. The rapid advance of DNA methylation assessment technologies changes that dynamic and presents the possibility that methylation-based clinical tools to aid the ascertainment of smoking status or effectiveness of treatment can be developed. In this chapter, we review the latest advances in this field and discuss how these advances allow us insight as to methods through which to prevent smoking and shed insight into optimizing strategies through which to identify biomarkers for other behavioral illnesses which share similar contributions from environmental and gene–environmental interaction effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, T., McAughey, J., Mocker, C., McGrath, C., & Zimmermann, R. (2010). Influence of filter ventilation on the chemical composition of cigarette mainstream smoke. Analytica Chimica Acta, 657(1), 36–44. doi:http://dx.doi.org/10.1016/j.aca.2009.10.015.

    Article  PubMed  Google Scholar 

  • Anczak, J. D., & Nogler, R. A. 2nd. (2003). Tobacco cessation in primary care: Maximizing intervention strategies. Clinical Medicine and Research, 1(3), 201–216.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benowitz, N. L. (1996). Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiologic Reviews, 18(2), 188–204.

    Article  PubMed  Google Scholar 

  • Bock, C., Tomazou, E. M., Brinkman, A. B., Muller, F., Simmer, F., Gu, H., et al. (2010). Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature Biotechnology, 28(10), 1106–1114. doi:10.1038/nbt.1681.

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyd, N. R., Windsor, R. A., Perkins, L. L., & Lowe, J. B. (1998). Quality of measurement of smoking status by self-report and saliva cotinine among pregnant women. Maternal and Child Health Journal, 2(2), 77–83.

    Article  PubMed  Google Scholar 

  • Breitling, L. P., Yang, R., Korn, B., Burwinkel, B., & Brenner, H. (2011). Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. American Journal of Human Genetics, 88(4), 450–457. doi:10.1016/j.ajhg.2011.03.003.

    Article  PubMed Central  PubMed  Google Scholar 

  • Breitling, L. P., Salzmann, K., Rothenbacher, D., Burwinkel, B., & Brenner, H. (2012). Smoking, F2RL3 methylation, and prognosis in stable coronary heart disease. European Heart Journal, 33, 2841–2848. doi:10.1093/eurheartj/ehs091.

    Google Scholar 

  • Breton, C. V., Byun, H.-M., Wenten, M., Pan, F., Yang, A., & Gilliland, F. D. (2009). Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American Journal of Respiratory and Critical Care Medicine, 180(5):462–467. doi:10.1164/rccm.200901-0135OC.

    Article  PubMed Central  PubMed  Google Scholar 

  • Britton, G. R., Brinthaupt, J., Stehle, J. M., & James, G. D. (2004). Comparison of self-reported smoking and urinary cotinine levels in a rural pregnant population. Journal of Obstetric, Gynecologic, and Neonatal Nursing: JOGNN/NAACOG, 33(3), 306–311.

    Article  Google Scholar 

  • Caraballo, R. S., Giovino, G. A., & Pechacek, T. F. (2004). Self-reported cigarette smoking vs. serum cotinine among U.S. adolescents. Nicotine and Tobacco Research, 6(1), 19–25. doi:10.1080/14622200310001656821.

    Article  PubMed  Google Scholar 

  • Centers for Disease Control & and Prevention. (2008). Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. MMWR. Morbidity and Mortality Weekly Report, 57(45), 1226–1228.

    Google Scholar 

  • Detich, N., Bovenzi, V., & Szyf, M. (2003). Valproate induces replication-independent active DNA demethylation. Journal of Biological Chemistry, 278(30), 27586–27592. doi:10.1074/jbc.M303740200.

    Article  PubMed  Google Scholar 

  • Fan, S., & Zhang, X. (2009). CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochemical and Biophysical Research Communications, 383(4), 421–425.

    Article  PubMed  Google Scholar 

  • Florescu, A., Ferrence, R., Einarson, T., Selby, P., Soldin, O., & Koren, G. (2009). Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: Focus on developmental toxicology. Therapeutic Drug Monitoring, 31(1), 14–30. 10.1097/FTD.1090b1013e3181957a3181953b.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fowler, J. S., Volkow, N. D., Wang, G. J., Pappas, N., Logan, J., MacGregor, R., et al. (1996a). Inhibition of monoamine oxidase B in the brains of smokers. Nature, 379(6567), 733–736.

    Article  Google Scholar 

  • Fowler, J. S., Volkow, N. D., Wang, G. J., Pappas, N., Logan, J., Shea, C., et al. (1996b). Brain monoamine oxidase A inhibition in cigarette smokers. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 14065–14069.

    Google Scholar 

  • Frank, J. E., Hoffman, D. S., & Flanagan, V. (1999). Use of repeated cotinine determinations as a motivational and educational tool in smoking cessation counseling for pregnant women. Pediatric Research, 45(4, Part 2 of 2), 197A–197A.

    Article  Google Scholar 

  • Gerrard, M., Gibbons, F. X., Stock, M. L., Lune, L. S., & Cleveland, M. J. (2005). Images of smokers and willingness to smoke among African American pre-adolescents: An application of the prototype/willingness model of adolescent health risk behavior to smoking initiation. Journal of Pediatric Psychology, 30(4), 305–318. doi:10.1093/jpepsy/jsi026.

    Article  PubMed  Google Scholar 

  • Gorber, S. C., Schofield-Hurwitz, S., Hardt, J., Levasseur, G., & Tremblay, M. (2009). The accuracy of self-reported smoking: A systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine and Tobacco Research, 11(1), 12–24. doi:10.1093/ntr/ntn010.

    Article  Google Scholar 

  • Gurrieri, F., & Accadia, M. (2009). Genetic imprinting: The paradigm of Prader-Willi and Angelman syndromes. Endocrine Development, 14, 20–28.

    Article  PubMed  Google Scholar 

  • Hancock, D. B., Artigas, M. S., Gharib, S. A., Henry, A., Manichaikul, A., Ramasamy, A., et al. (2012). Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genetics, 8(12), e1003098. doi:10.1371/journal.pgen.1003098.

    Article  PubMed Central  PubMed  Google Scholar 

  • Heath, A. C., Kirk, K. M., Meyer, J. M., & Martin, N. G. (1999). Genetic and social determinants of initiation and age at onset of smoking in Australian twins. Behavior Genetics, 29(6), 395–407.

    Article  PubMed  Google Scholar 

  • Herman, A., & Sofuoglu, M. (2010). Comparison of available treatments for tobacco addiction. Current Psychiatry Reports, 12(5), 433–440. doi:10.1007/s11920-010-0134-6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hetherington, J., Coutts, R., & Davison, K. (2012). An evaluation of a novel biomarker feedback intervention on smoking cessation: A pilot study. Journal of Smoking Cessation, 7(02), 80–88. doi:10.1017/jsc.2012.16.

    Article  Google Scholar 

  • Ito, K., Lim, S., Caramori, G., Cosio, B., Chung, K. F., Adcock, I. M., & Barnes, P. J. (2002). A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8921–8926. doi:10.1073/pnas.132556899.

    Google Scholar 

  • Jarvis, M. J., Fidler, J., Mindell, J., Feyerabend, C., & West, R. (2008). Assessing smoking status in children, adolescents and adults: Cotinine cut-points revisited. Addiction, 103(9), 1553–1561. doi:10.1111/j.1360-0443.2008.02297.x.

    Article  PubMed  Google Scholar 

  • Joubert, B. R., HÃ¥berg, S. E., Nilsen, R. M., Wang, X., Vollset, S. E., Murphy, S. K., et al. (2012). 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspectives, 120, 1425–1431.

    Google Scholar 

  • Kahn, J. R., & Pearlin, L. I. (2006). Financial strain over the life course and health among older adults. Journal of Health and Social Behavior, 47(1), 17–31. doi:10.1177/002214650604700102.

    Article  PubMed  Google Scholar 

  • Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11(10), 903–913.

    Article  PubMed  Google Scholar 

  • Kumar, A., Choi, K.-H., Renthal, W., Tsankova, N. M., Theobald, D. E. H., Truong, H.-T., et al. (2005). Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 48(2), 303–314. doi:http://dx.doi.org/10.1016/j.neuron.2005.09.023.

    Article  PubMed  Google Scholar 

  • Launay, J.-M., Del Pino, M., Chironi, G., Callebert, J., Peoc’h, K., Mégnien, J.-L., et al. (2009). Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One, 4(11), e7959.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lessov, C. N., Martin, N. G., Statham, D. J., Todorov, A. A., Slutske, W. S., Bucholz, K. K., et al. (2004). Defining nicotine dependence for genetic research: Evidence from Australian twins. Psychological Medicine, 34(5), 865–879.

    Article  PubMed  Google Scholar 

  • Li, M. D. (2006). The genetics of nicotine dependence. Current Psychiatry Reports, 8(2), 158–164.

    Article  PubMed  Google Scholar 

  • Liu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., et al. (2010). Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 42(5), 436–440. doi:http://www.nature.com/ng/journal/v42/n5/suppinfo/ng.572_S1.html.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maes, H. H., Neale, M. C., Kendler, K. S., Martin, N. G., Heath, A. C., & Eaves, L. J. (2006). Genetic and cultural transmission of smoking initiation: An extended twin kinship model. Behavior Genetics, 36(6), 795–808.

    Article  PubMed  Google Scholar 

  • Manzardo, A. M., Henkhaus, R. S., & Butler, M. G. (2012). Global DNA promoter methylation in frontal cortex of alcoholics and controls. Gene, 498(1), 5–12. doi:http://dx.doi.org/10.1016/j.gene.2012.01.096.

    Article  PubMed Central  PubMed  Google Scholar 

  • McClure, J. B. (2001). Are biomarkers a useful aid in smoking cessation? A review and analysis of the literature. Behavioral Medicine, 27(1), 37–47. doi:10.1080/08964280109595770.

    Article  PubMed  Google Scholar 

  • Messer, K., Pierce, J. P., Zhu, S.-H., Hartman, A. M., Al-Delaimy, W. K., Trinidad, D. R., & Gilpin, E. A. (2007). The California tobacco control program’s effect on adult smokers: (1) Smoking cessation. Tobacco Control, 16(2), 85–90. doi:10.1136/tc.2006.016873.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149(7), 1635–1646. doi:http://dx.doi.org/10.1016/j.cell.2012.05.003.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mill, J., Davies, M., Volta, M., Dobson, R., Meaburn, E., Tang, T., & Schalkwyk, L. (2011). Methylomic brain and blood: Brain areas-specific differentially methylated regions, individual differences, and allele specific DNA methylation. Paper presented at the American Society For Human Genetics, Montréal, Canada.

    Google Scholar 

  • Nguyen, L. P., & Bradfield, C. A. (2007). The search for endogenous activators of the aryl hydrocarbon receptor. Chemical Research in Toxicology, 21(1), 102–116. doi:10.1021/tx7001965.

    Article  PubMed Central  PubMed  Google Scholar 

  • Owen, L., & McNeill, A. (2001). Saliva cotinine as indicator of cigarette smoking in pregnant women. Addiction, 96(7), 1001–1006. doi:10.1080/09652140120053057.

    Article  PubMed  Google Scholar 

  • Park, S.-J., & Nakai, K. (2011). A regression analysis of gene expression in ES cells reveals two gene classes that are significantly different in epigenetic patterns. BMC Bioinformatics, 12(Suppl 1), S50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Philibert, R., Madan, A., Andersen, A., Cadoret, R., Packer, H., & Sandhu, H. (2007). Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. American Journal of Medical Genetics, 144B(1), 101–105. doi:10.1002/ajmg.b.30414.

    Article  PubMed  Google Scholar 

  • Philibert, R. A., Gunter, T. D., Beach, S. R., Brody, G. H., & Madan, A. (2008). MAOA methylation is associated with nicotine and alcohol dependence in women. American Journal of Medical Genetics, 147B(5), 565–570. doi:10.1002/ajmg.b.30778.

    Article  PubMed  Google Scholar 

  • Philibert, R. A., Beach, S. R., Gunter, T. D., Brody, G. H., Madan, A., & Gerrard, M. (2010a). The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 153B(2), 619–628. doi:10.1002/ajmg.b.31031.

    Google Scholar 

  • Philibert, R. A., Beach, S. R., Gunter, T. D., Brody, G. H., Madan, A., & Gerrard, M. (2010b). The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. American Journal of Medical Genetics, 153B(2), 619–628. doi:10.1002/ajmg.b.31031.

    Google Scholar 

  • Philibert, R. A., Beach, S. R., & Brody, G. H. (2012a). Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers. Epigenetics, 7(11), 1331–1338.

    Article  Google Scholar 

  • Philibert, R. A., Plume, J. M., Gibbons, F. X., Brody, G. H., & Beach, S. R. (2012b). The impact of recent alcohol use on genome wide DNA methylation signatures. Frontiers in Genetics, 3, 54. doi:10.3389/fgene.2012.00054.

    Article  Google Scholar 

  • Philibert, R., Beach, S. R., Li, K.-M., & Brody, G. (2013). Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Journal of Clinical Epigenetics, 5(1), 19.

    Article  Google Scholar 

  • Prom-Wormley, E. C., Eaves, L. J., Foley, D. L., Gardner, C. O., Archer, K. J., Wormley, B. K., et al. (2009). Monoamine oxidase A and childhood adversity as risk factors for conduct disorder in females. Psychological Medicine, 39, 579–590.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shadel, W. G., & Cervone, D. (2011). The role of the self in smoking initiation and smoking cessation: A review and blueprint for research at the intersection of social-cognition and health. Self and Identity, 10(3), 386–395. doi:10.1080/15298868.2011.557922.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shadel, W. G., Shiffman, S., Niaura, R., Nichter, M., & Abrams, D. B. (2000). Current models of nicotine dependence: What is known and what is needed to advance understanding of tobacco etiology among youth. Drug and Alcohol Dependence, 59(Supplement 1), 9–22. doi:10.1016/s0376-8716(99)00162-3.

    Article  Google Scholar 

  • Shahab, L., West, R., & McNeill, A. (2011). A randomized, controlled trial of adding expired carbon monoxide feedback to brief stop smoking advice: Evaluation of cognitive and behavioral effects. Health Psychology, 30(1), 49–57. doi:10.1037/a0021821.

    Article  PubMed  Google Scholar 

  • Shaykhiev, R., Krause, A., Salit, J., Strulovici-Barel, Y., Harvey, B. G., O’Connor, T. P., & Crystal, R. G. (2009). Smoking-dependent reprogramming of alveolar macrophage polarization: Implication for pathogenesis of chronic obstructive pulmonary disease. Journal of Immunology, 183(4), 2867–2883.

    Article  Google Scholar 

  • Shenker, N. S., Polidoro, S., van Veldhoven, K., Sacerdote, C., Ricceri, F., Birrell, M. A., et al. (2013). Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Human Molecular Genetics, 22, 843–851. doi:10.1093/hmg/dds488.

    Article  PubMed  Google Scholar 

  • Shumay, E., Logan, J., Volkow, N. D., & Fowler, J. S. (2012). Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAOA enzyme in healthy men. Epigenetics, 7(10), 10–19.

    Article  Google Scholar 

  • Smith, Z. D., & Meissner, A. (2013). DNA methylation: Roles in mammalian development. Nature Reviews Genetics, 14(3), 204–220.

    Article  PubMed  Google Scholar 

  • Stevens, K. R., & Munoz, L. R. (2004). Cigarette smoking: Evidence to guide measurement. Research in Nursing and Health, 27(4), 281–292. doi:10.1002/nur.20024.

    Article  PubMed  Google Scholar 

  • Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. Nature reviews Genetics, 9(6), 465–476. doi:10.1038/nrg2341.

    Article  PubMed  Google Scholar 

  • Thomassin, H., Oakeley, E. J., & Grange, T. (1999). Identification of 5-methylcytosine in complex genomes. Methods, 19(3), 465–475.

    Article  PubMed  Google Scholar 

  • True, W. R., Xian, H., Scherrer, J. F., Madden, P. A., Bucholz, K. K., Heath, A. C., et al. (1999). Common genetic vulnerability for nicotine and alcohol dependence in men. Archives of General Psychiatry, 56(7), 655–661.

    Article  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services. (1990). A report of the surgeon general: The health benefits of smoking cessation. Washington, DC: U.S. Department of Health and Human Services.

    Google Scholar 

  • Van Schooten, F., Godschalk, R., Breedijk, A., Maas, L., Kriek, E., Sakai, H., et al. (1997). 32P-postlabelling of aromatic DNA adducts in white blood cells and alveolar macrophages of smokers: Saturation at high exposures. Mutation Research, 378(1–2), 65–75.

    Article  PubMed  Google Scholar 

  • Van Vliet, J., Oates, N., & Whitelaw, E. (2007). Epigenetic mechanisms in the context of complex diseases. Cellular and Molecular Life Sciences, 64(12), 1531–1538.

    Article  PubMed  Google Scholar 

  • Wannamethee, S. G., Lowe, G. D. O., Shaper, A. G., Rumley, A., Lennon, L., & Whincup, P. H. (2005). Associations between cigarette smoking, pipe/cigar smoking, and smoking cessation, and haemostatic and inflammatory markers for cardiovascular disease. European Heart Journal, 26(17), 1765–1773. doi:10.1093/eurheartj/ehi183.

    Article  PubMed  Google Scholar 

  • Weaving, L. S., Ellaway, C. J., Gecz, J., & Christodoulou, J. (2005). Rett syndrome: Clinical review and genetic update. Journal of Medical Genetics, 42(1), 1–7. doi:10.1136/jmg.2004.027730.

    Article  PubMed Central  PubMed  Google Scholar 

  • Webb, D. A., Boyd, N. R., Messina, D., & Windsor, R. A. (2003). The discrepancy between self-reported smoking status and urine continine levels among women enrolled in prenatal care at four publicly funded clinical sites. Journal of public health management and practice: JPHMP, 9(4), 322–325.

    Article  PubMed  Google Scholar 

  • Yates, W., Cadoret, R., & Troughton, E. (1998). The Iowa adoption studies methods and results. In M. LaBuda & E. Grigorenko (Eds.), On the way to individuality: Methodological issues in behavioral genetics (pp. 95–125). Hauppauge: Nova Science Publishers.

    Google Scholar 

  • Yawn, B. P., & Kaplan, A. (2008). Co-morbidities in people with COPD: A result of multiple diseases, or multiple manifestations of smoking and reactive inflammation? Primary Care Respiratory Journal: Journal of the General Practice Airways Group, 17(4), 199–205. doi:10.3132/pcrj.2008.00021.

    Article  Google Scholar 

  • Yu, P. H., & Boulton, A. A. (1987). Irreversible inhibition of monoamine oxidase by some components of cigarette smoke. Life Sciences, 41(6), 675–682.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work in this study was supported in part by MH080898 and DA03434457 to Dr. Philibert. Additional support was derived from the Center for Contextual Genetics and Prevention Science (Grant Number P30 DA027827, Dr. Gene Brody) funded by the National Institute on Drug Abuse. Intellectual property right claims are pending on some of the material related to this manuscript on behalf of Dr. Philibert. Finally, Dr. Philibert is the chief scientific officer and part owner of Behavioral Diagnostics, Inc., a firm which is developing epigenetic tests for the market place.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert A. Philibert or S.R.H. Beach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Philibert, R., Beach, S., Brody, G. (2014). The DNA Methylation Signature of Smoking: An Archetype for the Identification of Biomarkers for Behavioral Illness. In: Stoltenberg, S. (eds) Genes and the Motivation to Use Substances. Nebraska Symposium on Motivation, vol 61. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0653-6_6

Download citation

Publish with us

Policies and ethics