Skip to main content

Rodent Models of Genetic Contributions to Motivation to Abuse Alcohol

  • Chapter
  • First Online:
Genes and the Motivation to Use Substances

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 61))

Abstract

The distinction between alcohol use (normative) and abuse (unfortunately common) implies dysregulation of motivation directed toward the drug. Genetic contributions to abuse risk are mediated through personality differences, other predispositions to drink excessively, and differences in sensitivity to the acute and chronic consequences of the drug. How to assess motivation in laboratory animals is not straightforward, but risk factors for and consequences of alcohol abuse can be modeled with reasonable fidelity in laboratory rodents. Remarkably, few rodent studies focus on the genetic contributions to alcohol’s reinforcing value: Almost all examine preferential drinking of unflavored alcohol over water. Such studies will likely never avoid the confounding role of taste preferences and most often yield intake levels insufficient to yield a pharmacologically significant blood alcohol level. Genotypes that avoid alcohol probably do so based on preingestive sensory cues; however, postingestive consequences are also important. Thus, the quest for improved measures of reinforcing value continues. We have genetic differences aplenty, but still lack evidence that any genotype will readily self-administer alcohol to the devastating extent that many alcoholics will. Encouraging results that are emerging include improved behavioral methods for elevating alcohol intake and inferring alcohol reinforcement, as well as new genetic animal models. Several ingenious assays to index alcohol’s motivational effects have been used extensively. Alcoholic drinking that attempts to prevent or to alleviate withdrawal symptoms has been modeled. Another characteristic of alcoholic drinking is its persistence despite abundant evidence to the drinker of the damaging effects of the excessive drinking on work, relationships, and/or health. Modeling such persistence in rodents has been uncommon to date. New genetic animal models include lines of mice selectively bred for chronic high drinking and others bred for high binge-like drinking. We have a much more clear idea now about some important experiments remaining to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkley-Levenson, A. M., & Crabbe, J. C. (2012). Ethanol drinking microstructure of a high drinking in the dark selected mouse line. Alcoholism: Clinical and Experimental Research, 36, 1330–1339.

    Google Scholar 

  • Barkley-Levenson, A. M., Cunningham, C. L., Smitasin, P. J., & Crabbe, J. C. (2013). Addiction Biology, epub ahead of print.

    Google Scholar 

  • Barth, K. S., & Malcolm, R. J. (2010). Disulfiram: An old therapeutic with new applications. CNS and Neurological Disorders: Drug Targets, 9, 5–12.

    Google Scholar 

  • Becker, H. C. (2013). Animal models of excessive alcohol consumption in rodents. Current Topics in Behavioral Neuroscience, 13, 355–377.

    Google Scholar 

  • Belknap, J. K., & Atkins, A. L. (2001). The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mammalian Genome, 12, 893–899.

    PubMed  Google Scholar 

  • Belknap, J. K., Crabbe, J. C., & Young, E. R. (1993). Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology, 112, 503–510.

    PubMed  Google Scholar 

  • Bell, R. L., Sable, H. J., Colombo, G., Hyytia, P., Rodd, Z. A., & Lumeng, L. (2012). Animal models for medications development targeting alcohol abuse using selectively bred rat lines: Neurobiological and pharmacological validity. Pharmacology Biochemistry and Behavior, 103, 119–155.

    Google Scholar 

  • Bice, P. J., Liang, T., Zhang, L., Graves, T. J., Carr, L. G., Lai, D., et al. (2010). Fine mapping and expression of candidate genes within the chromosome 10 QTL region of the high and low alcohol-drinking rats. Alcohol (Fayetteville, N. Y.), 44, 477–485.

    PubMed  Google Scholar 

  • Bice, P. J., Lai, D., Zhang, L., & Foroud, T. (2011). Fine mapping quantitative trait loci that influence alcohol preference behavior in the high and low alcohol preferring (HAP and LAP) mice. Behavior Genetics, 41, 565–570.

    PubMed  Google Scholar 

  • Bilbao, A. (2013). Advanced transgenic approaches to understand alcohol-related phenotypes in animals. Current Topics in Behavioral Neuroscience, 13, 271–311.

    Google Scholar 

  • Bjork, K., Hansson, A. C., & Sommer, W. H. (2010). Genetic variation and brain gene expression in rodent models of alcoholism implications for medication development. International Review of Neurobiology, 91, 129–171.

    PubMed  Google Scholar 

  • Blane, H. T., & Leonard, K. E. (1999). Psychological theories of drinking and alcoholism. (2nd ed.). New York: Guilford.

    Google Scholar 

  • Broadbent, J., Muccino, K. J., & Cunningham, C. L. (2002). Ethanol-induced conditioned taste aversion in 15 inbred mouse strains. Behavioral Neuroscience, 116, 138–148.

    PubMed  Google Scholar 

  • Brown, J. S. (1961). The motivation of behavior. New York: McGraw-Hill

    Google Scholar 

  • Chester, J. A., Lumeng, L., Li, T. K., & Grahame, N. J. (2003). High- and low-alcohol-preferring mice show differences in conditioned taste aversion to alcohol. Alcoholism: Clinical and Experimental Research, 27, 12–18.

    Google Scholar 

  • Ciccocioppo, R. (2013). Genetically selected alcohol preferring rats to model human alcoholism. Current Topics in Behavioral Neuroscience, 13, 251–269.

    Google Scholar 

  • Crabbe, J. C. (2012). Translational behaviour-genetic studies of alcohol: Are we there yet? Genes Brain and Behavior, 11, 375–386.

    Google Scholar 

  • Crabbe, J. C. (2013). Use of animal models of alcohol-related behavior. In A. Pfefferbaum & E. V. Sullivan (Eds.), Handbook of clinical neurology: Alcoholism. New York: Elsevier.

    Google Scholar 

  • Crabbe, J. C., Phillips, T. J., Harris, R. A., Arends, M. A., & Koob, G. F. (2006). Alcohol-related genes: Contributions from studies with genetically engineered mice. Addiction Biology, 11, 195–269.

    PubMed  Google Scholar 

  • Crabbe, J. C., Metten, P., Rhodes, J. S., Yu, C.-H., Brown, L. L., Phillips, T. J., et al. (2009). A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication. Biological Psychiatry, 65, 662–670.

    PubMed Central  PubMed  Google Scholar 

  • Crabbe, J. C., Phillips, T. J., & Belknap, J. K. (2010). The complexity of alcohol drinking: Studies in rodent genetic models. Behavior Genetics, 40, 737–750.

    PubMed Central  PubMed  Google Scholar 

  • Crabbe, J. C., Harris, R. A., & Koob, G. F. (2011). Preclinical studies of alcohol binge drinking. Annals of the New York Academy of Sciences, 1216, 24–40.

    PubMed Central  PubMed  Google Scholar 

  • Crabbe, J. C., Colville, A. M., Kruse, L. C., Cameron, A. J., Spence, S. E., Schlumbohm, J. P., et al. (2012a). Ethanol tolerance and withdrawal severity in high drinking in the dark selectively bred mice. Alcoholism: Clinical and Experimental Research, 36, 1152–1161.

    Google Scholar 

  • Crabbe, J. C., Harkness, J. H., Spence, S. E., Huang, L. C., & Metten, P. (2012b). Intermittent availability of ethanol does not always lead to elevated drinking in mice. Alcohol and Alcoholism, 47, 509–517.

    Google Scholar 

  • Crabbe, J. C., Kruse, L. C., Colville, A. M., Cameron, A. J., Spence, S. E., Schlumbohm, J. P., et al. (2012c). Ethanol sensitivity in high drinking in the dark selectively bred mice. Alcoholism: Clinical and Experimental Research, 36, 1162–1170.

    Google Scholar 

  • Crabbe, J. C., Metten, P., Huang, L. C., Schlumbohm, J. P., Spence, S. E., Barkley-Levenson, A. M., et al. (2012d). Ethanol withdrawal-associated drinking and drinking in the dark: Common and discrete genetic contributions. Addiction Genetics, 1, 3–11.

    Google Scholar 

  • Cunningham, C. L., & Phillips, T. J. (2003). Genetic basis of ethanol reward. In R. Maldonado (Ed.), Molecular biology of drug addiction (pp. 263–294). Totowa: Humana.

    Google Scholar 

  • Cunningham, C. L., Gremel, C. M., & Groblewski, P. A. (2006). Drug-induced conditioned place preference and aversion in mice. Nature Protocols, 1, 1662–1670.

    PubMed  Google Scholar 

  • Cunningham, C. L. L., Gremel, C. M., & Groblewski, P. A. (2009). Genetic influences on conditioned taste aversion. In S. Reilly & T. R. Schachtman (Eds.), Conditioned taste aversion: Behavioral and neural processes (pp. 387–421). New York: Oxford University Press.

    Google Scholar 

  • Cunningham, C. L., Fidler, T. L., Murphy, K. V., Mulgrew, J. A., & Smitasin, P. J. (2013). Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal. Biological Psychiatry, 73, 249–255.

    PubMed Central  PubMed  Google Scholar 

  • Drews, E., Racz, I., Lacava, A. D., Barth, A., Bilkei-Gorzo, A., Wienker, T. F., et al. (2010). Quantitative trait loci contributing to physiological and behavioural ethanol responses after acute and chronic treatment. International Journal of Neuropsychopharmacology, 13, 155–169.

    PubMed  Google Scholar 

  • Egli, M. (2005). Can experimental paradigms and animal models be used to discover clinically effective medications for alcoholism? Addiction Biology, 10, 309–319.

    PubMed  Google Scholar 

  • Ehlers, C. L., Walter, N. A. R., Dick, D. M., Buck, K. J., & Crabbe, J. C. (2010). A comparison of selected quantitative trait loci associated with alcohol use phenotypes in humans and mouse models. Addiction Biology, 15, 185–199.

    PubMed Central  PubMed  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. (4th ed.). Harlow: Longman.

    Google Scholar 

  • Fehr, C., Shirley, R. L., Crabbe, J. C., Belknap, J. K., Buck, K. J., & Phillips, T. J. (2005). The syntaxin binding protein 1 gene (Stxbp1) is a candidate for an ethanol preference drinking locus on mouse chromosome 2. Alcoholism: Clinical and Experimental Research, 29, 708–720.

    Google Scholar 

  • Fidler, T. L., Clews, T. W., & Cunningham, C. L. (2006). Reestablishing an intragastric ethanol self-infusion model in rats. Alcoholism: Clinical and Experimental Research, 30, 414–428.

    Google Scholar 

  • Fidler, T. L., Dion, A. M., Powers, M. S., Ramirez, J. J., Mulgrew, J. A., Smitasin, P. J., et al. (2011). Intragastric self-infusion of ethanol in high- and low-drinking mouse genotypes after passive ethanol exposure. Genes Brain and Behavior, 10, 264–275.

    Google Scholar 

  • Fidler, T. L., Powers, M. S., Ramirez, J. J., Crane, A., Mulgrew, J., Smitasin, P., et al. (2012). Dependence induced increases in intragastric alcohol consumption in mice. Addiction Biology, 17, 13–32.

    PubMed Central  PubMed  Google Scholar 

  • Files, F. J., Samson, H. H., Denning, C. E., & Marvin, S. (1998). Comparison of alcohol-preferring and nonpreferring selectively bred rat lines. II. Operant self-administration in a continuous-access situation. Alcoholism: Clinical and Experimental Research, 22, 2147–2158.

    Google Scholar 

  • Gentry, R. T. (1985). An experimental model of self-intoxication in C57 mice. Alcohol (Fayetteville, N. Y.), 2, 671–675.

    Google Scholar 

  • George, O., Le, M. M., & Koob, G. F. (2012). Allostasis and addiction: Role of the dopamine and corticotropin-releasing factor systems. Physiology and Behavior, 106, 58–64.

    PubMed Central  PubMed  Google Scholar 

  • Gill, K., & Boyle, A. E. (2005). Genetic analysis of alcohol intake in recombinant inbred and congenic strains derived from A/J and C57BL/6J progenitors. Mammalian Genome, 16, 319–331.

    PubMed  Google Scholar 

  • Gizer, I. R., Edenberg, H. J., Gilder, D. A., Wilhelmsen, K. C., & Ehlers, C. L. (2011). Association of alcohol dehydrogenase genes with alcohol-related phenotypes in a Native American community sample. Alcoholism: Clinical and Experimental Research, 35, 2008–2018.

    Google Scholar 

  • Goldman, D., & Ducci, F. (2007). Deconstruction of vulnerability to complex diseases: Enhanced effect sizes and power of intermediate phenotypes. Scientific World Journal, 7, 124–130.

    PubMed  Google Scholar 

  • Goldman, D., Oroszi, G., & Ducci, F. (2005). The genetics of addictions: Uncovering the genes. Nature Reviews Genetics, 6, 521–532.

    PubMed  Google Scholar 

  • Grahame, N. J., & Cunningham, C. L. (1997). Intravenous ethanol self-administration in C57BL/6J and DBA/2J mice. Alcoholism: Clinical and Experimental Research, 21, 56–62.

    Google Scholar 

  • Grahame, N. J., Li, T. K., & Lumeng, L. (1999). Selective breeding for high and low alcohol preference in mice. Behavior Genetics, 29, 47–57.

    PubMed  Google Scholar 

  • Grahame, N. J., Chester, J. A., Rodd-Henricks, K., Li, T. K., & Lumeng, L. (2001). Alcohol place preference conditioning in high- and low-alcohol preferring selected lines of mice. Pharmacology Biochemistry and Behavior, 68, 805–814.

    Google Scholar 

  • Grant, K. A., Leng, X., Green, H. L., Szeliga, K. T., Rogers, L. S., & Gonzales, S. W. (2008). Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration. Alcoholism: Clinical and Experimental Research, 32, 1824–1838.

    Google Scholar 

  • Green, A. S., & Grahame, N. J. (2008). Ethanol drinking in rodents: Is free-choice drinking related to the reinforcing effects of ethanol? Alcohol (Fayetteville, N. Y.), 42, 1–11.

    Google Scholar 

  • Griffin, W. C., III, Lopez, M. F., & Becker, H. C. (2009). Intensity and duration of chronic ethanol exposure is critical for subsequent escalation of voluntary ethanol drinking in mice. Alcoholism: Clinical and Experimental Research, 33, 1893–1900.

    Google Scholar 

  • Grossman, S. P. (1968). The physiological basis of specific and nonspecific motivational processes. In W. J. Arnold (Ed.), Nebraska symposium on motivation (pp. 1–46). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Hopf, F. W., Chang, S. J., Sparta, D. R., Bowers, M. S., & Bonci, A. (2010). Motivation for alcohol becomes resistant to quinine adulteration after 3 to 4 months of intermittent alcohol self-administration. Alcoholism: Clinical and Experimental Research, 34, 1565–1573.

    Google Scholar 

  • Hughes, J. R. (2009). Alcohol withdrawal seizures. Epilepsy & Behavior, 15, 92–97.

    Google Scholar 

  • Iancu, O. D., Overbeck, D., Darakjian, P., Metten, P., McWeeney, S., Crabbe, J. C., et al. (2013). Selection for drinking in the dark alters brain gene coexpression networks. Alcoholism: Clinical and Experimental Research, 37(8), 1295–1303.

    Google Scholar 

  • Izidio, G. S., Oliveira, L. C., Oliveira, L. F., Pereira, E., Wehrmeister, T. D., & Ramos, A. (2011). The influence of sex and estrous cycle on QTL for emotionality and ethanol consumption. Mammalian Genome, 22, 329–340.

    PubMed  Google Scholar 

  • Karahanian, E., Quintanilla, M. E., Tampier, L., Rivera-Meza, M., Bustamante, D., Gonzalez-Lira, V., et al. (2011). Ethanol as a prodrug: Brain metabolism of ethanol mediates its reinforcing effects. Alcoholism: Clinical and Experimental Research, 35, 606–612.

    Google Scholar 

  • Kliethermes, C. L., Cronise, K., & Crabbe, J. C. (2004). Anxiety-like behavior in mice in two apparatuses during withdrawal from chronic ethanol vapor inhalation. Alcoholism: Clinical and Experimental Research, 28, 1012–1019.

    Google Scholar 

  • Koob, G. F. (2013). Theoretical frameworks and mechanistic aspects of alcohol addiction: Alcohol addiction as a reward deficit disorder. Current Topics in Behavioral Neuroscience, 13, 3–30.

    Google Scholar 

  • Leeman, R. F., Heilig, M., Cunningham, C. L., Stephens, D. N., Duka, T., & O’Malley, S. S. (2010). Ethanol consumption: How should we measure it? Achieving consilience between human and animal phenotypes. Addiction Biology, 15, 109–124.

    PubMed Central  PubMed  Google Scholar 

  • Lesscher, H. M., & Vanderschuren, L. J. (2012). Compulsive drug use and its neural substrates. Reviews in the Neurosciences, 23(5–6), 731–745.

    PubMed  Google Scholar 

  • Lesscher, H. M., van Kerkhof, L. W., & Vanderschuren, L. J. (2010). Inflexible and indifferent alcohol drinking in male mice. Alcoholism: Clinical and Experimental Research, 34, 1219–1225.

    Google Scholar 

  • Levine, S. (1968). Hormones and conditioning. In W. J. Arnold (Ed.), Nebraska symposium on motivation (pp. 85–103). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Liu, J., Zhou, Z., Hodgkinson, C. A., Yuan, Q., Shen, P. H., Mulligan, C. J., et al. (2011). Haplotype-based study of the association of alcohol-metabolizing genes with alcohol dependence in four independent populations. Alcoholism: Clinical and Experimental Research, 35, 304–316.

    Google Scholar 

  • Lopez, M. F., Grahame, N. J., & Becker, H. C. (2011). Development of ethanol withdrawal-related sensitization and relapse drinking in mice selected for high- or low-ethanol preference. Alcoholism: Clinical and Experimental Research, 35, 953–962.

    Google Scholar 

  • Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A., & Shaham, Y. (2013). Context-induced relapse to alcohol seeking after punishment in a rat model. Biological Psychiatry, 73, 256–262.

    PubMed Central  PubMed  Google Scholar 

  • Mardones, J. (1951). On the relationship between deficiency of B viatmins and alcohol intake in rats. Quarterly Journal of Studies on Alcohol, 12, 563–575.

    PubMed  Google Scholar 

  • Mardones, J. (1960). Experimentally induced changes in the free selection of ethanol. In C. C. Pfeiffer & J. R. Smythies (Eds.), International review of neurobiology (pp. 41–76). New York: Academic.

    Google Scholar 

  • Matson, L. M., & Grahame, N. J. (2011). Pharmacologically relevant intake during chronic, free-choice drinking rhythms in selectively bred high alcohol-preferring mice. Addiction Biology, 18(6), 921–999.

    PubMed  Google Scholar 

  • McClearn, G. E. (1968). Genetics and motivation of the mouse. In W. J. Arnold (Ed.), Nebraska symposium on motivation (pp. 47–83). Lincoln: University of Nebraska Press.

    Google Scholar 

  • McClearn, G. E., & Rodgers, D. A. (1959). Differences in alcohol preference among inbred strains of mice. Quarterly Journal of Studies on Alcohol, 20, 691–695.

    Google Scholar 

  • Milner, L. C., & Buck, K. J. (2010). Identifying quantitative trait loci (QTLs) and genes (QTGs) for alcohol-related phenotypes in mice. International Review of Neurobiology, 91, 173–204.

    PubMed  Google Scholar 

  • Mulligan, M. K., Ponomarev, I., Hitzemann, R. J., Belknap, J. K., Tabakoff, B., Harris, R. A., et al. (2006). Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proceedings of the National Academy of Sciences of the United States of America, 103, 6368–6373.

    PubMed Central  PubMed  Google Scholar 

  • Nelson, E. C., Heath, A. C., Bucholz, K. K., Madden, P. A., Fu, Q., Knopik, V., et al. (2004). Genetic epidemiology of alcohol-induced blackouts. Archives of General Psychiatry, 61, 257–263.

    PubMed  Google Scholar 

  • Oberlin, B., Best, C., Matson, L., Henderson, A., & Grahame, N. (2011). Derivation and characterization of replicate high- and low-alcohol preferring lines of mice and a high-drinking crossed HAP line. Behavior Genetics, 41, 288–302.

    PubMed Central  PubMed  Google Scholar 

  • Pandey, S. C., Zhang, H., Ugale, R., Prakash, A., Xu, T., & Misra, K. (2008). Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism. Journal of Neuroscience, 28, 2589–2600.

    PubMed  Google Scholar 

  • Penning, R., McKinney, A., Bus, L. D., Olivier, B., Slot, K., & Verster, J. C. (2013). Measurement of alcohol hangover severity: Development of the Alcohol Hangover Severity Scale (AHSS). Psychopharmacology, 225, 803–810.

    PubMed  Google Scholar 

  • Phillips, T. J. (1997). Behavior genetics of drug sensitization. Critical Reviews in Neurobiology, 11, 21–33.

    PubMed  Google Scholar 

  • Rhodes, J. S., Best, K., Belknap, J. K., Finn, D. A., & Crabbe, J. C. (2005). Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiology and Behavior, 84, 53–63.

    PubMed  Google Scholar 

  • Rhodes, J. S., Ford, M. M., Yu, C.-H., Brown, L. L., & Finn, D. A., Garland, T. Jr., et al. (2007). Mouse inbred strain differences in ethanol drinking to intoxication. Genes Brain and Behavior, 6, 1–18.

    Google Scholar 

  • Richter, C. P. (1926). A study of the effect of moderate doses of alcohol on the growth and behavior of the rat. Journal of Experimental Zoology, 44, 397–418.

    Google Scholar 

  • Richter, C. P. (1953). Alcohol, beer and wine as foods. Quarterly Journal of Studies on Alcohol, 14, 525–539.

    PubMed  Google Scholar 

  • Richter, C. P., & Campbell, K. H. (1940). Alcohol taste thresholds and concentrations of solution preferred by rats. Science, 91, 507–508.

    PubMed  Google Scholar 

  • Rivera-Meza, M., Quintanilla, M. E., & Tampier, L. (2012). Reduction of ethanol consumption in alcohol-preferring rats by dual expression gene transfer. Alcohol and Alcoholism, 47, 102–108.

    PubMed Central  PubMed  Google Scholar 

  • Rodgers, D. A. (1966). Factors underlying differences in alcohol preference among inbred strains of mice. Psychosomatic Medicine, 28, 498–513.

    Google Scholar 

  • Samson, H. H. (2000). The microstructure of ethanol drinking: Genetic and behavioral factors in the control of drinking patterns. Addiction (Abingdon, England), 95(Suppl 2), S61–72.

    Google Scholar 

  • Samson, H. H., & Czachowski, C. L. (2002). Behavioral measures of alcohol self-administration and intake control: Rodent models. International Review of Neurobiology, 54, 107–143.

    Google Scholar 

  • Samson, H. H., Files, F. J., Denning, C., & Marvin, S. (1998). Comparison of alcohol-preferring and nonpreferring selectively bred rat lines. I. Ethanol initiation and limited access operant self-administration. Alcoholism: Clinical and Experimental Research, 22, 2133–2146.

    Google Scholar 

  • Samson, H. H., Cunningham, C. L., Czachowski, C. L., Chappell, A., Legg, B., & Shannon, E. (2004). Devaluation of ethanol reinforcement. Alcohol (Fayetteville, N. Y.), 32, 203–212.

    Google Scholar 

  • Saxon, A. J., & McCarty, D. (2005). Challenges in the adoption of new pharmacotherapeutics for addiction to alcohol and other drugs. Pharmacology and Therapeutics, 108, 119–128.

    PubMed  Google Scholar 

  • Shabani, S., Martin-Fardon, R., Kerr, T. M., & Weiss, F. (2012). Rats with history of ethanol dependence resist suppression of ethanol seeking by punishment. Neuroscience Abstracts, 169.02/U19. Ref Type: Abstract.

    Google Scholar 

  • Socaransky, S. M., Aragon, C. M., Amit, Z., & Blander, A. (1984). Higher correlation of ethanol consumption with brain than liver aldehyde dehydrogenase in three strains of rats. Psychopharmacology, 84, 250–253.

    PubMed  Google Scholar 

  • Sommer, W. H., & Spanagel, R. (2013). Behavioral neurobiology of alcohol addiction. Heidelberg: Springer.

    Google Scholar 

  • Spanagel, R., & Vengeliene, V. (2013). New pharmacological treatment strategies for relapse prevention. Current Topics in Behavioral Neuroscience, 13, 583–609.

    Google Scholar 

  • Sprow, G. M., & Thiele, T. E. (2012). The neurobiology of binge-like ethanol drinking: Evidence from rodent models. Physiology and Behavior, 106, 325–331.

    PubMed Central  PubMed  Google Scholar 

  • Stephens, D. N., Duka, T., Crombag, H. S., Cunningham, C. L., Heilig, M., & Crabbe, J. C. (2010). Reward sensitivity: Issues of measurement, and achieving consilience between human and animal phenotypes. Addiction Biology, 15, 145–168.

    PubMed  Google Scholar 

  • Valdez, G. R., Roberts, A. J., Chan, K., Davis, H., Brennan, M., Zorrilla, E. P., et al. (2002). Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: Regulation by corticotropin-releasing factor. Alcoholism: Clinical and Experimental Research, 26, 1494–1501.

    Google Scholar 

  • Vendruscolo, L. F., Barbier, E., Schlosburg, J. E., Misra, K. K., Whitfield, T. W. Jr., Logrip, M. L., et al. (2012). Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. Journal of Neuroscience, 32, 7563–7571.

    PubMed Central  PubMed  Google Scholar 

  • Wahlsten, D., Bachmanov, A., Finn, D. A., & Crabbe, J. C. (2006). Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proceedings of the National Academy of Sciences of the United States of America, 103, 16364–16369.

    PubMed Central  PubMed  Google Scholar 

  • Wang, X., Mozhui, K., Li, Z., Mulligan, M. K., Ingels, J. F., Zhou, X., et al. (2012). A promoter polymorphism in the Per3 gene is associated with alcohol and stress response. Translational Psychiatry, 2, e73.

    PubMed Central  PubMed  Google Scholar 

  • West, R. (2006). Theory of addiction. Oxford: Blackwell.

    Google Scholar 

  • Williams, R. J., Berry, L. J., & Beerstecher, E. Jr. (1949). Biochemical individuality. III. Genetotrophic factors in the etiology of alcoholism. Archives of Biochemistry, 23, 275–290.

    PubMed  Google Scholar 

  • Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Reviews, 94, 469–492.

    Google Scholar 

  • Yoneyama, N., Crabbe, J. C., Ford, M. M., Murillo, A., & Finn, D. A. (2008). Voluntary ethanol consumption in 22 inbred mouse strains. Alcohol (Fayetteville, N. Y.), 42, 149–160.

    Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was supported by the US Department of Veteran’s Affairs, the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health (Grants AA10760, AA13519, AA20245), and the US Department of the Army/DoD-TATRC Grant 10235005.05. I thank Chris Cunningham for his comments on a draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Crabbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crabbe, J. (2014). Rodent Models of Genetic Contributions to Motivation to Abuse Alcohol. In: Stoltenberg, S. (eds) Genes and the Motivation to Use Substances. Nebraska Symposium on Motivation, vol 61. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0653-6_2

Download citation

Publish with us

Policies and ethics