Skip to main content

A Flexible Protocol for Targeted Gene Co-expression Network Analysis

  • Protocol
  • First Online:
Plant Isoprenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1153))

Abstract

The inference of gene co-expression networks is a valuable resource for novel hypotheses in experimental research. Routine high-throughput microarray transcript profiling experiments and the rapid development of next-generation sequencing (NGS) technologies generate a large amount of publicly available data, enabling in silico reconstruction of regulatory networks. Analysis of the transcriptome under various experimental conditions proved that genes with an overall similar expression pattern often have similar functions. Consistently, genes involved in the same metabolic pathway are found in co-expressed modules. In this chapter, we describe a detailed workflow for analyzing gene co-expression networks using large-scale gene expression data and explain critical steps from design and data analysis to prediction of functionally related modules. This protocol is platform independent and can be used for data generated by ATH1 arrays, tiling arrays, or RNA sequencing for any organism. The most important feature of this workflow is that it can infer statistically significant gene co-expression networks for any number of genes and transcriptome data sets and it does not involve any particular hardware requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BarabĂ¡si AL, Oltvai ZN (2004) Network biology: Understanding the cell‘s functional organization. Nat Rev Genet 5(2):101–115

    Article  PubMed  Google Scholar 

  2. Huber W, Carey VJ, Long L et al (2007) Graphs in molecular biology. BMC Bioinformatics 8(Suppl 6):S8

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lèbre S, Lelandais G (2009) Modeling a regulatory network using temporal gene expression data: why and how? In: G. Alterovitz, R. Benson and M. Ramoni (eds) Automation in proteomics and genomics: an engineering case-based approach. Wiley, Chichester UK. pp. 69–96

    Google Scholar 

  4. Jeong H, Tombor B, Albert R et al (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  PubMed  CAS  Google Scholar 

  5. Oliver S (2000) Guilt-by-association goes global. Nature 403(6770):601–603

    Article  PubMed  CAS  Google Scholar 

  6. Gao F, Foat BC, Bussemaker HJ (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5:31

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hughes TR, Marton MJ, Jones AR et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126

    Article  PubMed  CAS  Google Scholar 

  8. Stuart JM, Segal E, Koller D et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  PubMed  CAS  Google Scholar 

  9. Gachon CMM, Langlois-Meurinne M, Henry Y et al (2005) Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol Biol 58(2):229–245

    Article  PubMed  CAS  Google Scholar 

  10. Wei HR, Persson S, Mehta T et al (2006) Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol 142(2):762–774

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Heyndrickx KS, Vandepoele K (2012) Systematic identification of functional plant modules through the integration of complementary data sources. Plant Physiol 159(3):884–901

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Mentzen WI, Wurtele ES (2008) Regulon organization of Arabidopsis. BMC Plant Biol 8:99

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tieri P, de la Fuente A, Termanini A et al (2011) Integrating Omics data for signaling pathways, interactome reconstruction, and functional analysis. Methods Mol Biol 719:415–433

    Article  PubMed  CAS  Google Scholar 

  14. Jeong H, Mason SP, Barabasi AL et al (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  PubMed  CAS  Google Scholar 

  15. Leclerc RD (2008) Survival of the sparsest: robust gene networks are parsimonious. Mol Syst Biol 4:213

    Article  PubMed Central  PubMed  Google Scholar 

  16. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  PubMed  CAS  Google Scholar 

  17. Jalili M (2011) Error and attack tolerance of small-worldness in complex networks. J Informetrics 5(3):422–430

    Article  Google Scholar 

  18. Krylov DM, Wolf YI, Rogozin IB et al (2003) Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 13(10):2229–2235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Zotenko E, Mestre J, O‘Leary DP et al (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 4(8):e1000140

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hartwell LH, Hopfield JJ, Leibler S et al (1999) From molecular to modular cell biology. Nature 402(6761):47–52

    Article  Google Scholar 

  21. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651

    Article  PubMed  CAS  Google Scholar 

  22. Gavin AC, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    Article  PubMed  CAS  Google Scholar 

  23. Freeman TC, Goldovsky L, Brosch M et al (2007) Construction, visualisation, and clustering of transcription networks from Microarray expression data. PLoS Comput Biol 3(10):2032–2042

    Article  PubMed  CAS  Google Scholar 

  24. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  PubMed  CAS  Google Scholar 

  25. Huang CY, Cheng CY, Sun CT (2007) Bridge and brick network motifs: identifying significant building blocks from complex biological systems. Artif Intell Med 41(2):117–127

    Article  PubMed  Google Scholar 

  26. Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  PubMed  CAS  Google Scholar 

  27. Kim TH, Kim J, Heslop-Harrison P et al (2011) Evolutionary design principles and functional characteristics based on kingdom-specific network motifs. Bioinformatics 27(2):245–251

    Article  PubMed  CAS  Google Scholar 

  28. Mao LY, Van Hemert JL, Dash S et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10:346

    Article  PubMed Central  PubMed  Google Scholar 

  29. Aoki K, Ogata Y, Shibata D (2007) Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol 48(3):381–390

    Article  PubMed  CAS  Google Scholar 

  30. Lisso J, Steinhauser D, Altmann T et al (2005) Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Res 33(8):2685–2696

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Hirai MY, Sugiyama K, Sawada Y et al (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A 104(15):6478–6483

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Meier S, Tzfadia O, Vallabhaneni R et al (2011) A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Syst Biol 5:77

    Article  PubMed Central  PubMed  Google Scholar 

  33. VranovĂ¡ E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5(2):318–333

    Article  PubMed  Google Scholar 

  34. Mutwil M, Usadel B, Schutte M et al (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152(1):29–43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Zampieri M, Soranzo N, Bianchini D et al (2008) Origin of co-expression patterns in E. coli and S. cerevisiae emerging from reverse engineering algorithms. PLoS One 3(8):e2981

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zare H, Sangurdekar D, Srivastava P et al (2009) Reconstruction of Escherichia coli transcriptional regulatory networks via regulon-based associations. BMC Syst Biol 3:39

    Article  PubMed Central  PubMed  Google Scholar 

  37. Segal E, Shapira M, Regev A et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Article  PubMed  CAS  Google Scholar 

  38. Ficklin SP, Feltus FA (2011) Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol 156(3):1244–1256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Ma S, Shi M, Li Y et al (2010) Incorporating gene co-expression network in identification of cancer prognosis markers. BMC Bioinformatics 11:271

    Article  PubMed Central  PubMed  Google Scholar 

  40. Oldham MC, Langfelder P, Horvath S (2012) Network methods for describing sample relationships in genomic datasets: application to Huntington's disease. BMC Syst Biol 6:63

    Article  PubMed Central  PubMed  Google Scholar 

  41. Horan K, Jang C, Bailey-Serres J et al (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147(1):41–57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Ehlting J, Provart NJ, Werck-Reichhart D (2006) Functional annotation of the Arabidopsis P450 superfamily based on large-scale co-expression analysis. Biochem Soc Trans 34:1192–1198

    Article  PubMed  CAS  Google Scholar 

  43. Brown DM, Zeef LAH, Ellis J et al (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17(8):2281–2295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Persson S, Wei H, Milne J et al (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 102(24):8633–8638

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Wille A, Zimmermann P, Vranova E et al (2004) Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol 5(11):R92

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed Central  PubMed  Google Scholar 

  47. Xu XJ, Wang LS, Ding DF (2004) Learning module networks from genome-wide location and expression data. FEBS Lett 578(3):297–304

    Article  PubMed  CAS  Google Scholar 

  48. Vandepoele K, Quimbaya M, Casneuf T et al (2009) Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 150(2):535–546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Movahedi S, Van Bel M, Heyndrickx KS et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798

    Article  PubMed  CAS  Google Scholar 

  50. Weirauch MT (2011) Gene coexpression networks for the analysis of DNA microarray data. Applied statistics for network biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 215–250

    Google Scholar 

  51. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(1):109–114

    Article  Google Scholar 

  52. VranovĂ¡ E, Hirsch-Hoffmann M, Gruissem W (2011) AtIPD: a curated database of Arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiol 156(4):1655–1660

    Article  PubMed Central  PubMed  Google Scholar 

  53. Toufighi K, Brady SM, Austin R et al (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43(1):153–163

    Article  PubMed  CAS  Google Scholar 

  54. Mockler TC, Michael TP, Priest HD et al (2007) The Diurnal project: Diurnal and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp 72:353–363

    Article  CAS  Google Scholar 

  55. Barrett T, Troup DB, Wilhite SE et al (2011) NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res 39:1005–1010

    Article  Google Scholar 

  56. Parkinson H, Sarkans U, Kolesnikov N et al (2011) ArrayExpress update-an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39:1002–1004

    Article  Google Scholar 

  57. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  58. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Obayashi T, Nishida K, Kasahara K et al (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering Plants. Plant Cell Physiol 52(2):213–219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Srinivasasainagendra V, Page GP, Mehta T et al (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147(3):1004–1016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747

    Article  PubMed Central  PubMed  Google Scholar 

  62. D'haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23:1499–1501

    Article  PubMed  Google Scholar 

  63. Bickel DR (2003) Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically. Bioinformatics 19(7):818–824

    Article  PubMed  CAS  Google Scholar 

  64. Ma S, Gong Q, Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17(11):1614–1625

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. ErdÅ‘s P, RĂ©nyi A (1961) On the strength of connectedness of a random graph. Acta Math Hung 12:261–267

    Article  Google Scholar 

  66. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  PubMed  CAS  Google Scholar 

  67. BarabĂ¡si AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eva VranovĂ¡ and Prof. Peter BĂ¼hlmann for helpful discussions and Philipp Ihmor for critically reading the manuscript. This work was supported by the Seventh Framework Program of the European Commission through the TiMet collaborative project (grant 245143) to W.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Gruissem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coman, D., RĂ¼timann, P., Gruissem, W. (2014). A Flexible Protocol for Targeted Gene Co-expression Network Analysis. In: RodrĂ­guez-ConcepciĂ³n, M. (eds) Plant Isoprenoids. Methods in Molecular Biology, vol 1153. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0606-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0606-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0605-5

  • Online ISBN: 978-1-4939-0606-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics