Skip to main content

Advanced Coronary Imaging

  • Chapter
  • First Online:
Imaging Coronary Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1250 Accesses

Abstract

Invasive angiography is the most commonly used modality for the assessment of coronary atherosclerosis. However, angiography is limited by image resolution and is thus unable to interrogate the individual components of the arterial vessel wall or delineate the dynamic nature of atherosclerosis. Intravascular ultrasound and more recently optical coherence tomography increase image resolution, above conventional angiography, and have informed our understanding of vascular biology in health and disease. The practice of interventional cardiology has been highly influenced by knowledge gained from these imaging techniques during coronary interventions and with medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown MS, Goldstein JL. Heart attacks: gone with the century? Science. 1996;272:629.

    Article  CAS  PubMed  Google Scholar 

  2. Glagov S, Weisenberg E, Zarins CK. Compensatory Enlargement of Human Atherosclerotic Coronary Arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  PubMed  Google Scholar 

  3. von Birgelen C, Slager CJ, Di Mario C, de Feyter PJ, Serruys PW. Volumetric intracoronary ultrasound: a new maximum confidence approach for the quantitative assessment of progression-regression of atherosclerosis? Atherosclerosis. 1995;118(Suppl):S103–13.

    Article  Google Scholar 

  4. Böse D, von Birgelen C, Erbel R. Intravascular ultrasound for the evaluation of therapies targeting coronary atherosclerosis. J Am Coll Cardiol. 2007;49:925–32.

    Article  PubMed  Google Scholar 

  5. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  6. Di Mario C, Görge G, Peters R, Kearney P, Pinto F, Hausmann D, et al. Clinical application and image interpretation in intracoronary ultrasound. Eur Heart J. 1998;19:207–29.

    Article  PubMed  Google Scholar 

  7. von Birgelen C, de Very EA, Mintz GS, Nicosia A, Bruining N, Li W, et al. ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation. 1997;96:2944–52.

    Article  Google Scholar 

  8. Jensen LO, Thayssen P, Pedersen KE, Stender S, Haghfelt T. Low variation and high reproducibility in plaque volume with intravascular ultrasound. Int J Cardiol. 2004;97:463–9.

    Article  PubMed  Google Scholar 

  9. Kastelein JJ, de Groot E. Ultrasound imaging techniques for the evaluation of cardiovascular therapies. Eur Heart J. 2008;29:849–58.

    Article  PubMed  Google Scholar 

  10. Lindsay AC, Choudhury RP. Form to function: current and future roles for atherosclerosis imaging in drug development. Nat Rev Drug Discov. 2008;7:517–29.

    Article  CAS  PubMed  Google Scholar 

  11. Low AF, Kawase Y, Chan YH, Tearney GJ. In vivo characterization of coronary plaques with conventional grey-scale intravascular ultrasound: correlation with optical coherence tomography. EuroIntervention. 2009;4:626–32.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Okubo M, Kawasaki M, Ishihara Y. Tissue characterization of coronary plaques: comparison of integrated backscatter intravascular ultrasound with virtual histology intravascular ultrasound. Circulation. 2008;72:1631–9.

    Article  Google Scholar 

  13. Nair A, Kuban BD, Tuzcu EM. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106:2200–6.

    Article  PubMed  Google Scholar 

  14. Kawasaki M, Bouma BE, Bresser J. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol. 2006;45:1946–53.

    Article  Google Scholar 

  15. Cespedes EI, de Korte CL, van der Steen AF. Intraluminal ultrasonic palpation: assessment of local and cross-sectional tissue stiffness. Ultrasound Med Biol. 2000;26:385–96.

    Article  CAS  PubMed  Google Scholar 

  16. Doyley MM, Mastik F, de Korte CL. Advancing intravascular ultrasonic palpation towards clinical applications. Ultrasound Med Biol. 2001;27:1471–80.

    Article  CAS  PubMed  Google Scholar 

  17. Sheifer SE, Canos MR, Weinfurt KP. Sex differences in coronary artery size assessed by intravascular ultrasound. Am Heart J. 2000;139:649.

    Article  CAS  PubMed  Google Scholar 

  18. Herity NA, Lo S, Lee DP. Effect of a change in gender on coronary arterial size: a longitudinal ultrasound study in transplanted hearts. J Am Coll Cardiol. 2003;41:1539.

    Article  PubMed  Google Scholar 

  19. Mintz GS, Popma JJ, Pichard AD. Limitations of angiography in the assessment of plaque distribution in coronary artery disease: a systemic study of target lesion eccentricity in 1446 lesions. Circulation. 1996;93:924.

    Article  CAS  PubMed  Google Scholar 

  20. Ziada KM, Tuzcu EM, De Franco AC. Intravascular ultrasound assessment of the prevalence and causes of angiographic “haziness” following high-pressure coronary stenting. Am J Cardiol. 1997;80:116.

    Article  CAS  PubMed  Google Scholar 

  21. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479.

    Article  CAS  PubMed  Google Scholar 

  22. St Goar FG, Pinto FJ, Alderman EL, et al. Intravascular ultrasound imaging of angiographically normal coronary arteries: an in vivo comparison with quantitative angiography. J Am Coll Cardiol. 1991;18:952.

    Article  CAS  PubMed  Google Scholar 

  23. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371.

    Article  CAS  PubMed  Google Scholar 

  24. Ziada KM, Tuzcu EM, De Franco AC. Intravascular ultrasound assessment of the prevalence and causes of angiographic “haziness” following high-pressure coronary stenting. Am J Cardiol. 1997;80:116–21.

    Article  CAS  PubMed  Google Scholar 

  25. Bech GL, De Bruyne B, Pijls NH. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.

    Article  CAS  PubMed  Google Scholar 

  26. Briguori C, Anzuini A, Airoldi F. Intravascular ultrasound criteria for the assessment of functional significance of intermediate coronary artery stenosis and comparison with functional flow reserve. Am J Cardiol. 2001;87:136–41.

    Article  CAS  PubMed  Google Scholar 

  27. Ricciardi MJ, Meyers S, Choi K, Pang J. Angiographically silent left main disease detected by intravascular ultrasound: a marker for future adverse cardiac events. Am Heart J. 2003;146:507–12.

    Article  PubMed  Google Scholar 

  28. Kang SJ, Lee JY, Ahn JM. Intravascular ultrasound derived predictors for fractional flow reserve in intermediate left main disease. J Am Coll Cardiol Intv. 2011;4:1168–74.

    Article  Google Scholar 

  29. Timmis SB, Burns WJ, Hermiller JB, et al. Influence of coronary atherosclerotic remodeling on the mechanism of balloon angioplasty. Am Heart J. 1997;134:1099.

    Article  CAS  PubMed  Google Scholar 

  30. Smith Jr SC, Feldman TE, Hirshfeld Jr JW, et al. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention—summary article: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol. 2006;47:216–35.

    Article  PubMed  Google Scholar 

  31. Cutlip DE, Baim DS, Ho KK, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation. 2001;103:1967–71.

    Article  CAS  PubMed  Google Scholar 

  32. Cheneau E, Leborgne L, Mintz GS, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7.

    Article  PubMed  Google Scholar 

  33. Fitzgerald PJ, Oshima A, Hayase M, et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000;102:523–30.

    Article  CAS  PubMed  Google Scholar 

  34. Uren NG, Schwarzacher SP, Metz JA, et al. for the POST Registry Investigators. Predictors and outcomes of stent thrombosis: an intra- vascular ultrasound registry. Eur Heart J. 2002;23:124–32.

    Article  PubMed  Google Scholar 

  35. Doi H, Maehara A, Mintz GS, et al. Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials. J Am Coll Cardiol Intv. 2009;2:1269–75, 27.

    Article  Google Scholar 

  36. Eshtehardi P, Samady H. Intravascular ultrasound for assessment of coronary drug-eluting stent deployment: an evolving field in need of new criteria. J Am Coll Cardiol Intv. 2010;3:364.

    Article  Google Scholar 

  37. Kasaoka S, Tobis JM, Akiyama T, et al. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol. 1998;32:1630–5.

    Article  CAS  PubMed  Google Scholar 

  38. Parise H, Maehara A, Stone GW, Leon MB, Mintz GS. Meta- analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am J Cardiol. 2011;107:374–82.

    Article  PubMed  Google Scholar 

  39. Park SM, Kim JS, Ko YG, et al. Angiographic and intravascular ultrasound follow up of paclitaxel- and sirolimus-eluting stent after poststent high-pressure balloon dilation: from the poststent optimal stent expansion trial. Catheter Cardiovasc Interv. 2011;77:15–21.

    Article  PubMed  Google Scholar 

  40. Jakabcin J, Spacek R, Bystron M, et al. Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter Cardiovasc Interv. 2010;75:578–83.

    PubMed  Google Scholar 

  41. Colombo A, Caussin C, Presbitero P, et al. AVIO: A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions (abstr). J Am Coll Cardiol 2010;56:Suppl B:xvii.

    Google Scholar 

  42. Roy P, Steinberg DH, Sushinsky SJ, et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J. 2008;29:1851–7.

    Article  CAS  PubMed  Google Scholar 

  43. Choi SY, Witzenbichler B, Maehara A, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ Cardiovasc Interv. 2011;4:239–47.

    Article  PubMed  Google Scholar 

  44. Oemrawsingh PV, Mintz GS, Schalij MJ, et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003;107:62.

    Article  PubMed  Google Scholar 

  45. Park SJ, Kim YH, Park DW. Impact of intravascular ultrasound guidance on long-term mortality in stenting fro unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;28:1304–9.

    Google Scholar 

  46. Tuzcu EM, Kapadia SR, Sachar R, et al. Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. J Am Coll Cardiol. 2005;45:1538.

    Article  PubMed  Google Scholar 

  47. Mehra MR, Ventura HO, Stapleton DD, et al. Presence of severe intimal thickening by intravascular ultrasonography predicts cardiac events in cardiac allograft vasculopathy. J Heart Lung Transplant. 1995;14:632.

    CAS  PubMed  Google Scholar 

  48. Kapadia SR, Nissen SE, Ziada KM, et al. Development of transplantation vasculopathy and progression of donor-transmitted atherosclerosis: comparison by serial intravascular ultrasound imaging. Circulation. 1998;98:2672.

    Article  CAS  PubMed  Google Scholar 

  49. Barbir M, Lazem F, Banner N, et al. The prognostic significance of non-invasive cardiac tests in heart transplant recipients. Eur Heart J. 1997;18:692.

    Article  CAS  PubMed  Google Scholar 

  50. Kobashigawa JA, Tobis JM, Starling RC, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol. 2005;45:1532.

    Article  PubMed  Google Scholar 

  51. Ramasubbu K, Schoenhagen P, Balghith MA, et al. Repeated intravascular ultrasound imaging in cardiac transplant recipients does not accelerate transplant coronary artery disease. J Am Coll Cardiol. 2003;41:1739.

    Article  PubMed  Google Scholar 

  52. Mehra MR, Crespo-Leiro MG, Dipchand A, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29:717.

    Article  PubMed  Google Scholar 

  53. von Birgelen C, Hartmann M, Mintz GS, Baumgart D, Schmermund A, Erbel R. Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (≥12 months) follow-up intravascular ultrasound. Circulation. 2003;108:2757–62.

    Article  Google Scholar 

  54. Hartmann M, von Birgelen C, Mintz GS, van Houwelingen GK, Eggebrecht H. Bo ̈se D et al. Relation between plaque progression and low-density lipoprotein cholesterol during aging as assessed with serial long-term (≥12 months) follow-up intravascular ultrasound of the left main coronary artery. Am J Cardiol. 2006;98:1419–23.

    Article  CAS  PubMed  Google Scholar 

  55. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–80.

    Article  CAS  PubMed  Google Scholar 

  56. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65.

    Article  CAS  PubMed  Google Scholar 

  57. Nissen SE, Tuzcu EM, Brewer HB, Sipahi I, Nicholls SJ, Ganz P, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354:1253–63.

    Article  CAS  PubMed  Google Scholar 

  58. Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356:1304–16.

    Article  CAS  PubMed  Google Scholar 

  59. Haung D, Swanson EA, Lin CP. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  Google Scholar 

  60. Takarada S, Imanishi T, Liu Y. Advantage of next-generation frequency-domain optical coherence tomography compared to conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75:202–6.

    Article  PubMed  Google Scholar 

  61. Barlis P, Gonzalo N, Di Mario C. A multicenter evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention. 2009;5:90–5.

    Article  PubMed  Google Scholar 

  62. Imola F, Mallus MT, Ramazzotti V. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention. 2010;6:575–81.

    Article  PubMed  Google Scholar 

  63. Virmani R, Bruke AP, Farb A. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kume T, Akasaka T, Kawamoto T. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.

    Article  PubMed  Google Scholar 

  65. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    Article  PubMed  Google Scholar 

  66. Kume T, Okura H, Yamada R, et al. Frequency and spatial distribution of thin-cap fibroatheroma assessed by 3-vessel intravascular ultrasound and optical coherence tomography: an ex vivo validation and an initial in vivo feasibility study. Circ J. 2009;73:1086–91.

    Article  PubMed  Google Scholar 

  67. Barlis P, Serruys PW, Gonzalo N, et al. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long- term outcomes. Am J Cardiol. 2008;102:391–5.

    Article  PubMed  Google Scholar 

  68. Nadkarni SK, Pierce MC, Park BH, et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol. 2007;49:1474–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hong MK, Mintz GS, Lee CW, et al. Late stent malapposition after drug-eluting stent implantation: an intravascular ultrasound analysis with long-term follow-up. Circulation. 2006;113:414–9.

    Article  CAS  PubMed  Google Scholar 

  70. Tanabe K, Serruys PW, Degertekin M, et al. Incomplete stent apposition after implantation of paclitaxel-eluting stents or bare metal stents: in- sights from the randomized TAXUS II trial. Circulation. 2005;111:900–5.

    Article  CAS  PubMed  Google Scholar 

  71. Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoronary stenting by intra- vascular optical coherence tomography. Heart. 2003;89:317–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Tanigawa J, Barlis P, Dimopoulos K, Di Mario C. Optical coherence tomography to assess malapposition in overlapping drug-eluting stents. EuroIntervention. 2008;3:580–3.

    Article  PubMed  Google Scholar 

  73. Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95:1913–9.

    Article  CAS  PubMed  Google Scholar 

  74. Tanimoto S, Rodriguez-Granillo G, Barlis P, et al. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv. 2008;72:228–35.

    Article  PubMed  Google Scholar 

  75. Barlis P, Regar E, Serruys PW, et al. An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur Heart J. 2010;31:165–76.

    Article  CAS  PubMed  Google Scholar 

  76. Guagliumi G, Costa MA, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel- eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Out- comes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation. 2011;123:274–81.

    Article  CAS  PubMed  Google Scholar 

  77. van Beusekom HM, Serruys PW. Drug-eluting stent endothelium: presence or dysfunction. JACC Cardiovasc Interv. 2011;3:76–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir R. Kapadia MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Philip, F., Kapadia, S.R. (2014). Advanced Coronary Imaging. In: Nicholls, S., Crowe, T. (eds) Imaging Coronary Atherosclerosis. Contemporary Cardiology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0572-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0572-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0571-3

  • Online ISBN: 978-1-4939-0572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics