Skip to main content

Molecular Derangements in Sporadic Primary Aldosteronism

  • Chapter
  • First Online:
Primary Aldosteronism

Abstract

Until very recently molecular derangements were merely unknown in primary aldosteronism. New genetic techniques have allowed detailed searches which have led to identification (to date) of a number of mutated genes—KCNJ5, ATP1A1, ATP2B3, and CACNA1D—all encoding for channel proteins which when activated or disturbed cause depolarization of the glomerulosa cell and release of aldosterone. In addition, activation of the beta catenin pathway has also been noticed in these cells. Identification of these genes gives hope for future development of targeted drugs, detailed diagnostic procedures, and individualized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uebele VN, Nuss CE, Renger JJ, Connolly TM (2004) Role of voltage-gated calcium channels in potassium-stimulated aldosterone secretion from rat adrenal zona glomerulosa cells. J Steroid Biochem Mol Biol 92(3):209–218, Epub 2004/11/24

    Article  PubMed  CAS  Google Scholar 

  2. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C et al (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331(6018):768–772, Epub 2011/02/12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Oki K, Plonczynski MW, Luis Lam M, Gomez-Sanchez EP, Gomez-Sanchez CE (2012) Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology 153(4):1774–1782, Epub 2012/02/09

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Flechtner I, de Lonlay P, Polak M (2006) Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences. Diabetes Metab 32(6):569–580

    Article  PubMed  CAS  Google Scholar 

  5. Monticone S, Hattangady NG, Nishimoto K, Mantero F, Rubin B, Cicala MV et al (2012) Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab 97(8):E1567–E1572, Epub 2012/05/26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Akerstrom T, Crona J, Delgado Verdugo A, Starker LF, Cupisti K, Willenberg HS et al (2012) Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PloS One 7(7):e41926, Epub 2012/08/01

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Seccia TM, Mantero F, Letizia C, Kuppusamy M, Caroccia B, Barisa M et al (2012) Somatic mutations in the KCNJ5 gene raise the lateralization index: implications for the diagnosis of primary aldosteronism by adrenal vein sampling. J Clin Endocrinol Metab 97(12):E2307–E2313, Epub 2012/09/27

    Article  PubMed  CAS  Google Scholar 

  8. Boulkroun S, Beuschlein F, Rossi GP, Golib-Dzib JF, Fischer E, Amar L et al (2012) Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension 59(3):592–598, Epub 2012/01/26

    Article  PubMed  CAS  Google Scholar 

  9. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29(11):566–575, Epub 2008/10/01

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM et al (2008) TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci U S A 105(6):2203–2208, Epub 2008/02/06

    Article  PubMed Central  PubMed  Google Scholar 

  11. Spat A (2004) Glomerulosa cell–a unique sensor of extracellular K+ concentration. Mol Cell Endocrinol 217(1–2):23–26, Epub 2004/05/12

    Article  PubMed  CAS  Google Scholar 

  12. Nogueira EF, Gerry D, Mantero F, Mariniello B, Rainey WE (2010) The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas. Clin Endocrinol (Oxf) 73(1):22–29, Epub 2009/11/03

    PubMed  CAS  Google Scholar 

  13. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD et al (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45(4):440–444, 4e1-2. Epub 2013/02/19

    Article  PubMed  CAS  Google Scholar 

  14. Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A et al (2013) Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 45(9):1055–1060, Epub 2013/08/06

    Article  PubMed  CAS  Google Scholar 

  15. Yingst DR, Davis J, Krenz S, Schiebinger RJ (1999) Insights into the mechanism by which inhibition of Na, K-ATPase stimulates aldosterone production. Metabolism 48(9):1167–1171, Epub 1999/09/14

    Article  PubMed  CAS  Google Scholar 

  16. Neri G, De Toni R, Tortorella C, Rebuffat P, Bova S, Cargnelli G et al (2006) Ouabain chronic infusion enhances the growth and steroidogenic capacity of rat adrenal zona glomerulosa: the possible involvement of the endothelin system. Int J Mol Med 18(2):315–319, Epub 2006/07/06

    PubMed  CAS  Google Scholar 

  17. Hajnoczky G, Csordas G, Hunyady L, Kalapos MP, Balla T, Enyedi P et al (1992) Angiotensin-II inhibits Na+/K+ pump in rat adrenal glomerulosa cells: possible contribution to stimulation of aldosterone production. Endocrinology 130(3):1637–1644, Epub 1992/03/01

    PubMed  CAS  Google Scholar 

  18. Moseley AE, Huddleson JP, Bohanan CS, James PF, Lorenz JN, Aronow BJ et al (2005) Genetic profiling reveals global changes in multiple biological pathways in the hearts of Na, K-ATPase alpha 1 isoform haploinsufficient mice. Cell Physiol Biochem 15(1–4):145–158, Epub 2005/02/15

    Article  PubMed  CAS  Google Scholar 

  19. Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD et al (2013) Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 45(9):1050–1054, Epub 2013/08/06

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Smith TG, Clark SK, Katz DE, Reznek RH, Phillips RK (2000) Adrenal masses are associated with familial adenomatous polyposis. Dis Colon Rectum 43(12):1739–1742, Epub 2001/01/13

    Article  PubMed  CAS  Google Scholar 

  21. Kim AC, Reuter AL, Zubair M, Else T, Serecky K, Bingham NC et al (2008) Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135(15):2593–2602, Epub 2008/07/05

    Article  PubMed  CAS  Google Scholar 

  22. Tissier F, Cavard C, Groussin L, Perlemoine K, Fumey G, Hagnere AM et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65(17):7622–7627, Epub 2005/09/06

    PubMed  CAS  Google Scholar 

  23. Berthon A, Sahut-Barnola I, Lambert-Langlais S, de Joussineau C, Damon-Soubeyrand C, Louiset E et al (2010) Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 19(8):1561–1576, Epub 2010/01/29

    Article  PubMed  CAS  Google Scholar 

  24. Tadjine M, Lampron A, Ouadi L, Bourdeau I (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 68(2):264–270, Epub 2007/09/15

    CAS  Google Scholar 

  25. Bonnet S, Gaujoux S, Launay P, Baudry C, Chokri I, Ragazzon B et al (2011) Wnt/beta-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors. J Clin Endocrinol Metab 96(2):E419–E426, Epub 2010/11/19

    Article  PubMed  CAS  Google Scholar 

  26. Boulkroun S, Samson-Couterie B, Golib-Dzib JF, Amar L, Plouin PF, Sibony M et al (2011) Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 152(12):4753–4763, Epub 2011/10/06

    Article  PubMed  CAS  Google Scholar 

  27. Azizan EA, Murthy M, Stowasser M, Gordon R, Kowalski B, Xu S et al (2012) Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas. Hypertension 59(3):587–591, Epub 2012/01/19

    Article  PubMed  CAS  Google Scholar 

  28. Taguchi R, Yamada M, Nakajima Y, Satoh T, Hashimoto K, Shibusawa N et al (2012) Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab 97(4):1311–1319, Epub 2012/01/27

    Article  PubMed  CAS  Google Scholar 

  29. Arnesen T, Glomnes N, Stromsoy S, Knappskog S, Heie A, Akslen LA et al (2013) Outcome after surgery for primary hyperaldosteronism may depend on KCNJ5 tumor mutation status: a population-based study from Western Norway. Langenbecks Arch Surg 398(6):869–874, Epub 2013/06/20

    Article  PubMed  Google Scholar 

  30. Yamada M, Nakajima Y, Taguchi R, Okamura T, Ishii S, Tomaru T et al (2012) KCNJ5 mutations in aldosterone- and cortisol-co-secreting adrenal adenomas. Endocr J 59(8):735–741, Epub 2012/08/07

    Article  PubMed  CAS  Google Scholar 

  31. Xekouki P (2012) KCNJ5 mutations in the National Institutes of Health cohort of patients with primary hyperaldosteronism: an infrequent genetic cause of Conn’s syndrome. Endocr Relat Cancer 19:255–260

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Hellman M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hellman, P., Åkerström, T., Björklund, P. (2014). Molecular Derangements in Sporadic Primary Aldosteronism. In: Hellman, P. (eds) Primary Aldosteronism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0509-6_4

Download citation

Publish with us

Policies and ethics