Skip to main content

Abstract

Abscisic acid (ABA) is an important phytohormone regulating various physiological aspects in plants such as seed maturation, dormancy, seedling growth, and stomatal behaviour. In this chapter, a global picture with recent findings in ABA metabolism and responses is overviewed. Because of putting the priority on simplicity, to understand historical importance, you should refer to other reviews such as Cutler et al. (Annu Rev Plant Biol 61:651–79, 2010). In recent years, many enzymes responsible for the synthesis and catabolism of ABA have been identified, almost completing the main pathway of ABA production. In ABA-responding cells, there are sets of core components in the ABA reception system, which regulates multiple responses including induction of gene expression and alteration of ion transport. Many players modify the core components to produce sophisticated reactions. The possibility of modification of the pathways at the molecular level to improve crop productivity will be discussed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

ABSCISIC ALDEHYDE OXIDASE

ABA1-4:

ABSCISIC ACID DEFICIENT 1–4

ABCG:

ATP-BINDING CASSETTE G

ABF:

ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR

ABI:

ABSCISIC ACID INSENSITIVE

AFP:

ABI FIVE BINDING PROTEIN

AKS:

ABA-RESPONSIVE KINASE SUBSTRATE

AREB:

ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN

AtrbohF:

A. thaliana respiratory burst oxidase homologue F

CDPK:

CALCIUM-DEPENDENT PROTEIN KINASE

CPK:

CALCIUM-DEPENDENT PROTEIN KINASE

CYP:

CYTOCHROME P450

DWA:

DWD HYPERSENSITIVE TO ABA

GORK:

GUARD-CELL OUTWARD-RECTIFYING K+ CHANNEL

HAB:

HOMOLOGY TO ABI

HAI:

HIGHLY ABSCISIC ACID INDUCED

KAT:

POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA

KEG:

KEEP ON GOING

KUP:

K+ UPTAKE TRANSPORTER

MAPK:

MITOGEN-ACTIVATED PROTEIN KINASES

NCED:

9-cis EPOXYCAROTENOID DIOXYGENASE

NRT:

NITRATE TRANSPORTER

OST:

OPEN STOMATA

PDR12:

PLEIOTROPIC DRUG RESISTANCE12

PP:

PROTEIN PHOSPHATASE

PYL:

PYR1-LIKE

PYR:

PYRABACTIN RESISTANCE

QUAC:

QUICK ACTIVATING ANION CHANNEL

RCAR:

REGULATORY COMPONENT OF ABA RECEPTOR

RHA2a:

RING-H2 FINGER A2a

SCS:

SnRK2-INTERACTING CALCIUM SENSOR

SDIR:

SALT- AND DROUGHT-INDUCED RING FINGER

SDR:

SHORT-CHAIN DEHYDROGENASE/REDUCTASE

SLAC:

SLOW ANION CHANNEL ASSOCIATED

SLAH:

SLAC1 HOMOLOGUE

SnRK:

SNF1-RELATED PROTEIN KINASE

SUMO:

SMALL UBIQUITIN-LIKE MODIFIER

ZEP:

ZEAXANTHIN EPOXIDASE

References

  • Akagi T, Katayama-Ikegami A, Kobayashi S et al (2012) Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol 158:1089–1102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Allen GJ, Murata Y, Chu SP et al (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 14:1649–1662

    PubMed Central  PubMed  CAS  Google Scholar 

  • Antoni R, Gonzalez-Guzman M, Rodriguez L et al (2012) Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980

    PubMed Central  PubMed  CAS  Google Scholar 

  • Antoni R, Gonzalez-Guzman M, Rodriguez L et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941

    PubMed Central  PubMed  CAS  Google Scholar 

  • Arrom L, Munné-Bosch S (2012) Hormonal regulation of leaf senescence in Lilium. J Plant Physiol 169:1542–1550

    PubMed  CAS  Google Scholar 

  • Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186

    PubMed  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Bauer H, Ache P, Lautner S et al (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57

    PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160:379–395

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boneh U, Biton I, Zheng C et al (2012) Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep 31:311–321

    PubMed  CAS  Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    PubMed  CAS  Google Scholar 

  • Brandt B, Brodsky DE, Xue S et al (2012) Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci U S A 109:10593–10598

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bu Q, Li H, Zhao Q et al (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150:463–481

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bucholc M, Ciesielski A, Goch G et al (2011) SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor. J Biol Chem 286:3429–3441

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cardi M, Chibani K, Cafasso D et al (2011) Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase. J Exp Bot 62:4013–4023

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carvalho RF, Carvalho SD, Duque P (2010) The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol 154:772–783

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chai YM, Jia HF, Li CL et al (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089

    PubMed  CAS  Google Scholar 

  • Chen H, Lai Z, Shi J et al (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Choi HI, Park HJ, Park JH et al (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR et al (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    PubMed  CAS  Google Scholar 

  • Dai M, Xue Q, McCray T et al (2013) The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 25:517–534

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    CAS  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz KJ et al (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8:49

    PubMed Central  PubMed  Google Scholar 

  • Duan B, Yang Y, Lu Y et al (2007) Interactions between water deficit, ABA, and provenances in Picea asperata. J Exp Bot 58:3025–3036

    PubMed  CAS  Google Scholar 

  • Dupeux F, Santiago J, Betz K et al (2011) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184

    PubMed Central  PubMed  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H et al (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    PubMed Central  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    PubMed Central  PubMed  CAS  Google Scholar 

  • Finkelstein R, Gampala SS, Lynch TJ et al (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 59:253–267

    PubMed  CAS  Google Scholar 

  • Frey A, Effroy D, Lefebvre V et al (2012) Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J 70:501–512

    PubMed  CAS  Google Scholar 

  • Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U S A 106:8380–8385

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A et al (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T et al (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y et al (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geiger D, Scherzer S, Mumm P et al (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106:21425–21430

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geiger D, Scherzer S, Mumm P et al (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107:8023–8028

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geiger D, Maierhofer T, Al-Rasheid KA et al (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4:ra32

    PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    PubMed  CAS  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R et al (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24:2483–2496

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hanano S, Domagalska MA, Nagy F et al (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11:1381–1392

    PubMed  CAS  Google Scholar 

  • Hao Q, Yin P, Li W et al (2011) The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42:662–672

    PubMed  Google Scholar 

  • Hattori T, Totsuka M, Hobo T et al (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    PubMed  CAS  Google Scholar 

  • Holman TJ, Jones PD, Russell L et al (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc Natl Acad Sci U S A 106:4549–4554

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hubbard KE, Siegel RS, Valerio G et al (2012) Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Ann Bot 109:5–17

    PubMed Central  PubMed  CAS  Google Scholar 

  • Imes D, Mumm P, Böhm J et al (2013) Open STomata Kinase OST1 controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J 74:372–382

    PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    PubMed  CAS  Google Scholar 

  • Jammes F, Song C, Shin D et al (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang Y, Joyce DC, Macnish AJ (2000) Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J Plant Growth Regul 19:106–111

    PubMed  CAS  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD et al (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    PubMed Central  PubMed  Google Scholar 

  • Kang J, Hwang JU, Lee M et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanno Y, Hanada A, Chiba Y et al (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 109:9653–9658

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K et al (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    PubMed  CAS  Google Scholar 

  • Kepka M, Benson CL, Gonugunta VK et al (2011) Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol 157:2108–2119

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim J, van Iersel MW (2011) Abscisic acid drenches can reduce water use and extend shelf life of Salvia splendens. Sci Hortic 127:420–423

    CAS  Google Scholar 

  • Kim H, Hwang H, Hong JW et al (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H et al (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    PubMed  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M et al (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK et al (1998) (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY et al (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    PubMed  CAS  Google Scholar 

  • Lee SC, Lan W, Buchanan BB et al (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci U S A 106:21419–21424

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee JH, Yoon HJ, Terzaghi W et al (2010) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22:1716–1732

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee JH, Terzaghi W, Deng XW (2011) DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci 180:352–357

    PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li Z, Li Z, Gao X et al (2012) ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. J Integr Plant Biol 54:180–188

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liotenberg S, North H, Marion-Poll A (1999) Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol Biochem 37:341–350

    CAS  Google Scholar 

  • Liu H, Stone SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22:2630–2641

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Shi L, Ye N et al (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    PubMed  CAS  Google Scholar 

  • Liu ZQ, Yan L, Wu Z et al (2012) Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. J Exp Bot 63:6371–6392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu A, Gao F, Kanno Y et al (2013) Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One 8:e56570

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lois LM, Lima CD, Chua NH (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15:1347–1359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT et al (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Kinoshita N et al (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–418

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lynch T, Erickson BJ, Finkelstein RR (2012) Direct interactions of ABA-insensitive (ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Mol Biol 80:647–658

    PubMed  CAS  Google Scholar 

  • Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518

    PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A et al (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    PubMed Central  PubMed  CAS  Google Scholar 

  • Melcher K, Ng LM, Zhou XE et al (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608

    PubMed Central  PubMed  CAS  Google Scholar 

  • Merilo E, Laanemets K, Hu H et al (2013) PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol 162:1652–1668

    PubMed Central  PubMed  CAS  Google Scholar 

  • Milborrow BV, Carrington NJ, Vaughan GT (1988) The cyclization of 8′-hydroxy abscisic acid to phaseic acid in vivo. Phytochemistry 27:757–759

    CAS  Google Scholar 

  • Miura K, Lee J, Jin JB et al (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci U S A 106:5418–5423

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y et al (2009) Structural basis of abscisic acid signalling. Nature 462:609–614

    PubMed  CAS  Google Scholar 

  • Mizrahi Y, Dostal HC, McGlasson WB et al (1975) Effects of abscisic acid and benzyladenine on fruits of normal and rin mutant tomatoes. Plant Physiol 56:544–546

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mori IC, Murata Y, Yang Y et al (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+)-permeable channels and stomatal closure. PLoS Biol 4:e327

    PubMed Central  PubMed  Google Scholar 

  • Morris CF, Moffatt JM, Sears RG et al (1989) Seed dormancy and responses of caryopses, embryos, and calli to abscisic acid in wheat. Plant Physiol 90:643–647

    PubMed Central  PubMed  CAS  Google Scholar 

  • Müller AH, Hansson M (2009) The barley magnesium chelatase 150-kD subunit is not an abscisic acid receptor. Plant Physiol 150:157–166

    PubMed Central  PubMed  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A et al (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    PubMed  CAS  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N et al (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949

    PubMed  CAS  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS et al (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    PubMed Central  PubMed  CAS  Google Scholar 

  • North HM, De Almeida A, Boutin JP et al (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824

    PubMed  CAS  Google Scholar 

  • Okamoto M, Kushiro T, Jikumaru Y et al (2011) ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry 72:717–722

    PubMed  CAS  Google Scholar 

  • Okamoto M, Peterson FC, Defries A et al (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci U S A 110:12132–12137

    PubMed Central  PubMed  CAS  Google Scholar 

  • Osakabe Y, Arinaga N, Umezawa T et al (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325–2336

    PubMed  CAS  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M et al (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    PubMed Central  PubMed  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ren X, Chen Z, Liu Y et al (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    CAS  Google Scholar 

  • Rook F, Corke F, Card R et al (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    PubMed  CAS  Google Scholar 

  • Rubio S, Rodrigues A, Saez A et al (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355

    PubMed Central  PubMed  CAS  Google Scholar 

  • Saavedra X, Modrego A, Rodriguez D et al (2010) The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol 152:133–150

    PubMed Central  PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A et al (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A et al (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    PubMed  CAS  Google Scholar 

  • Sato A, Sato Y, Fukao Y et al (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448

    PubMed  CAS  Google Scholar 

  • Schramm EC, Nelson SK, Kidwell KK et al (2013) Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’. Theor Appl Genet 126:791–803

    PubMed  CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJ, Koiwai H et al (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A 97:12908–12913

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shang Y, Yan L, Liu ZQ et al (2010) The Mg-chelatase H subunit antagonizes a group of WRKY transcription repressors to relieve ABA responsive genes of inhibition. Plant Cell 22:1909–1935

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ et al (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    PubMed  CAS  Google Scholar 

  • Sirichandra C, Gu D, Hu HC et al (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    PubMed  CAS  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD et al (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stone SL, Williams LA, Farmer LM et al (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sugliani M, Brambilla V, Clerkx EJ et al (2010) The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22:1936–1946

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sun L, Wang YP, Chen P et al (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    PubMed Central  PubMed  CAS  Google Scholar 

  • Takahashi Y, Ebisu Y, Kinoshita T et al (2013) bHLH transcription factors that facilitate K + uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Sci Signal 6:ra48

    PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    PubMed  CAS  Google Scholar 

  • Tsuzuki T, Takahashi K, Inoue S et al (2011) Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res 124:527–538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K et al (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:17306–17311

    PubMed Central  PubMed  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593

    PubMed Central  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H et al (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF et al (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vilela B, Moreno-Cortés A, Rabissi A et al (2013) The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor. PLoS One 8:e58105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vlad F, Rubio S, Rodrigues A et al (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    PubMed  CAS  Google Scholar 

  • Wu FQ, Xin Q, Cao Z et al (2009) The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol 150:1940–1954

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB et al (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H et al (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. Plant Cell 13:2063–2083

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M et al (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    PubMed  CAS  Google Scholar 

  • Xu ZJ, Nakajima M, Suzuki Y et al (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285–1295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yin P, Fan H, Hao Q et al (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1236

    PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K et al (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    PubMed  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H et al (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    CAS  Google Scholar 

  • Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Yang C, Li Y et al (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang Q, Xin Q et al (2012) Complex structures of the abscisic acid receptor PYL3/rcar13 reveal a unique regulatory mechanism. Structure 20:780–790

    PubMed  CAS  Google Scholar 

  • Zhao R, Sun HL, Mei C et al (2011) The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192:61–73

    PubMed  CAS  Google Scholar 

  • Zheng Y, Schumaker KS, Guo Y (2012) Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109:12822–12827

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ et al (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zou JJ, Wei FJ, Wang C et al (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Academy of Finland (Project number 259169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujii, H. (2014). Abscisic Acid Implication in Plant Growth and Stress Responses. In: Tran, LS., Pal, S. (eds) Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0491-4_2

Download citation

Publish with us

Policies and ethics