Skip to main content

Oocyte Activation and Phospholipase C Zeta (PLCζ): Male Infertility and Implications for Therapeutic Intervention

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6332 Accesses

Abstract

Infertility is a condition that now affects an estimated one in seven couples. In approximately 40 % of cases, the primary cause of infertility rests with male-derived factors associated with a variety of anatomical, physiological, and molecular deficiencies. In a proportion of such cases, the functional ability of sperm to successfully fertilise and activate the oocyte is compromised. While assisted reproductive technology can successfully circumvent some of these issues via the application of artificial oocyte-activating agents, there is significant ongoing debate as to whether these chemical agents should be replaced with an endogenous alternative. Phospholipase C zeta (PLCζ) is the sperm-specific protein responsible for activating the quiescent oocyte following gamete fusion. Identified in a number of mammalian and non-mammalian organisms, PLCζ plays a fundamental role in the process of oocyte activation by inducing the controlled release of calcium in the ooplasm via an inositol triphosphate (IP3)-mediated signalling cascade. A growing body of evidence shows clear association between abnormalities in PLCζ structure, expression, localisation, and function to characterised states of human male infertility. Consequently there is significant global interest in PLCζ as both an endogenous therapeutic target to rescue infertile states associated with PLCζ-linked oocyte activation deficiency, and a diagnostic marker for oocyte activation ability. Here, we discuss the present status of PLCζ research and contemplate future applications of this fundamental sperm PLC in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. HFEA: latest UK IVF figures—2009 and 2010. http://www.hfea.gov.uk/ivf-figures-2006.html

  2. Nygren KG, Sullivan E, Zegers-Hochschild F et al (2012) International Committee for Monitoring Assisted Reproductive Technology (ICMART) world report: assisted reproductive technology 2003. Fertil Steril 95:2209–2222

    Google Scholar 

  3. Mahutte NG, Arici A (2003) Failed fertilization: is it predictable? Curr Opin Obstet Gynecol 15:211–218

    PubMed  Google Scholar 

  4. Heindryckx B, Van der Elst J, De Sutter P, Dhont M (2005) Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod 20:2237–2241

    CAS  PubMed  Google Scholar 

  5. Kashir J, Heindryckx B, Jones C et al (2010) Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 16:690–703

    CAS  PubMed  Google Scholar 

  6. Flaherty SP, Payne D, Matthews CD (1998) Fertilization failures and abnormal fertilization after intracytoplasmic sperm injection. Hum Reprod 13(suppl 1):155–164

    PubMed  Google Scholar 

  7. Yanagida K, Fujikura Y, Katayose H (2008) The present status of artificial oocyte activation in assisted reproductive technology. Reprod Med Biol 7:133–142

    Google Scholar 

  8. Miyazaki S, Ito M (2006) Calcium signals for egg activation in mammals. J Pharmacol Sci 100:545–552

    CAS  PubMed  Google Scholar 

  9. Kline D, Kline JT (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149:80–89

    CAS  PubMed  Google Scholar 

  10. Swann K, Ozil JP (1994) Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol 152:183–222

    CAS  PubMed  Google Scholar 

  11. Publicover S, Harper CV, Barratt C (2007) [Ca2+]i signalling in sperm—making the most of what you’ve got. Nat Cell Biol 9:235–242

    CAS  PubMed  Google Scholar 

  12. Swann K, Yu Y (2008) The dynamics of calcium oscillations that activate mammalian eggs. Int J Dev Biol 52:585–594

    CAS  PubMed  Google Scholar 

  13. Jones KT (2005) Mammalian egg activation: from Ca2+ spiking to cell cycle progression. Reproduction 130:813–823

    CAS  PubMed  Google Scholar 

  14. Jones KT (2007) Intracellular calcium in the fertilization and development of mammalian eggs. Clin Exp Pharmacol Physiol 34:1084–1089

    CAS  PubMed  Google Scholar 

  15. Stricker SA (1999) Comparative biology of calcium signalling during fertilisation and egg activation in mammals. Dev Biol 211:157–176

    CAS  PubMed  Google Scholar 

  16. Ramadan WM, Kashir J, Jones C, Coward K (2012) Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun Signal 10:12

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Miyazaki S, Shirakawa H, Nakada K, Honda Y (1993) Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev Biol 158:62–78

    CAS  PubMed  Google Scholar 

  18. Jones KT, Soeller C, Cannell MB (1998) The passage of Ca2+ and fluorescent markers between the sperm and egg after fusion in the mouse. Development 125:4627–4635

    CAS  PubMed  Google Scholar 

  19. Ducibella T, Huneau D, Angelichio E et al (2002) Egg-to-embryo transition is driven by differential responses to Ca(2+) oscillation number. Dev Biol 250:280–291

    CAS  PubMed  Google Scholar 

  20. Ducibella T, Schultz RM, Ozil JP (2006) Role of calcium signals in early development. Semin Cell Dev Biol 17:324–332

    CAS  PubMed  Google Scholar 

  21. Malcuit C, Kurokawa M, Fissore RA (2006) Calcium oscillations and mammalian egg activation. J Cell Physiol 206:565–573

    CAS  PubMed  Google Scholar 

  22. Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316:407–408

    CAS  PubMed  Google Scholar 

  23. Wong CC, Loewke KE, Bossert NL et al (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28:1115–1121

    CAS  PubMed  Google Scholar 

  24. Jaffe LF (1983) Sources of calcium in egg activation: a review and hypothesis. Dev Biol 99:265–276

    CAS  PubMed  Google Scholar 

  25. Jaffe LF (1991) The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc Natl Acad Sci U S A 88:9883–9887

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Créton R, Jaffe LF (1995) Role of calcium influx during the latent period in sea urchin fertilization. Dev Growth Differ 37:703–709

    Google Scholar 

  27. Créton R, Jaffe LF (2001) Chemiluminescence microscopy as a tool in biomedical research. Biotechniques 31:1098–1100

    PubMed  Google Scholar 

  28. Jaffe LA (1990) First messengers at fertilization. J Reprod Fertil Suppl 42:107–116

    CAS  PubMed  Google Scholar 

  29. Schultz RM, Kopf GS (1995) Molecular basis of mammalian egg activation. Curr Top Dev Biol 30:21–62

    CAS  PubMed  Google Scholar 

  30. Evans JP, Kopf GS (1998) Molecular mechanisms of sperm-egg interactions and egg activation. Andrologia 30:297–307

    CAS  PubMed  Google Scholar 

  31. Parrington J, Davis LC, Galione A, Wessel G (2007) Flipping the switch: how a sperm activates the egg at fertilization. Dev Dyn 236:2027–2038

    CAS  PubMed  Google Scholar 

  32. Swann K, Saunders CM, Rogers NT, Lai FA (2006) PLCzeta (zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin Cell Dev Biol 17:264–273

    CAS  PubMed  Google Scholar 

  33. Saunders CM, Swann K, Lai FA (2007) PLC zeta, a sperm-specific PLC and its potential role in fertilization. Biochem Soc Symp 74:23–36

    CAS  PubMed  Google Scholar 

  34. Swann K (1990) A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110:1295–1302

    CAS  PubMed  Google Scholar 

  35. Kyozuka K, Deguchi R, Mohri T, Miyazaki S (1998) Injection of sperm extract mimics spatiotemporal dynamics of Ca2+ responses and progression of meiosis at fertilization of ascidian oocytes. Development 125:4099–4105

    CAS  PubMed  Google Scholar 

  36. Dong JB, Tang TS, Sun FZ (2000) Xenopus and chicken sperm contain a cytosolic soluble protein factor which can trigger calcium oscillations in mouse eggs. Biochem Biophys Res Commun 268:947–951

    CAS  PubMed  Google Scholar 

  37. Coward K, Campos-Mendoza A, Larman M et al (2003) Teleost fish spermatozoa contain a cytosolic protein factor that induces calcium release in sea urchin egg homogenates and triggers calcium oscillations when injected into mouse oocytes. Biochem Biophys Res Commun 305:299–304

    CAS  PubMed  Google Scholar 

  38. Coward K, Ponting CP, Chang HY et al (2005) Phospholipase Czeta, the trigger of egg activation in mammals, is present in a non-mammalian species. Reproduction 130:157–163

    CAS  PubMed  Google Scholar 

  39. Jones KT, Matsuda M, Parrington J, Katan M, Swann K (2000) Different Ca2+-releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs. Biochem J 346(pt 3):743–749

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Saunders CM, Larman MG, Parrington J et al (2002) PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129:3533–3544

    CAS  PubMed  Google Scholar 

  41. Wu H, He CL, Fissore RA (1997) Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs. Mol Reprod Dev 46:176–189

    CAS  PubMed  Google Scholar 

  42. Singal T, Dhalla NS, Tappia PS (2004) Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem Biophys Res Commun 320:1015–1019

    CAS  PubMed  Google Scholar 

  43. Janetopoulos C, Devreotes P (2006) Phosphoinositide signaling plays a key role in cytokinesis. J Cell Biol 174:485–490

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Cockcroft S, Carvou N (2007) Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim Biophys Acta 1771:677–691

    CAS  PubMed  Google Scholar 

  45. Nakamura Y, Fukami K (2009) Roles of phospholipase C isozymes in organogenesis and embryonic development. Physiology 24:332–341

    CAS  PubMed  Google Scholar 

  46. Fukami K, Inanobe S, Kanemaru K, Nakamura Y (2010) Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res 49:429–437

    CAS  PubMed  Google Scholar 

  47. Hofmann SL, Majerus PW (1982) Modulation of phosphatidylinositol-specific phospholipase C activity by phospholipid interactions, diglycerides, and calcium ions. J Biol Chem 257:14359–14364

    CAS  PubMed  Google Scholar 

  48. Bahat A, Eisenbach M (2006) Sperm thermotaxis. Mol Cell Endocrinol 252:115–119

    CAS  PubMed  Google Scholar 

  49. Eisenbach M, Giojalas LC (2006) Sperm guidance in mammals—an unpaved road to the egg. Nat Rev Mol Cell Biol 7:276–285

    CAS  PubMed  Google Scholar 

  50. Bahat A, Eisenbach M (2010) Human sperm thermotaxis is mediated by phospholipase C and inositol trisphosphate receptor Ca2+ channel. Biol Reprod 82:606–616

    CAS  PubMed  Google Scholar 

  51. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    CAS  PubMed  Google Scholar 

  52. Hwang JI, Oh YS, Shin KJ et al (2005) Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J 389:181–186

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Nakahara M, Shimozawa M, Nakamura Y et al (2005) A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme. J Biol Chem 280:29128–29134

    CAS  PubMed  Google Scholar 

  54. Zhou Y, Wing MR, Sondek J, Harden TK (2005) Molecular cloning and characterization of PLCη2. Biochem J 391:667–676

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kelley GG, Reks SE, Ondrako JM, Smrcka AV (2001) Phospholipase Cε: a novel Ras effector. EMBO J 20:743–754

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Song C, Hu CD, Masago M et al (2001) Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem 276:2752–2757

    CAS  PubMed  Google Scholar 

  57. Fukami K, Nakao K, Inoue T et al (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292:920–923

    CAS  PubMed  Google Scholar 

  58. Darszon A, Beltran C, Felix R et al (2001) Ion transport in sperm signaling. Dev Biol 240:1–14

    CAS  PubMed  Google Scholar 

  59. Breitbart H (2002) Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol 187:139–144

    CAS  PubMed  Google Scholar 

  60. Fukami K, Yoshida M, Inoue T et al (2003) Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161:79–88

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Tomes CN, McMaster CR, Saling PM (1996) Activation of mouse sperm phosphatidylinositol-4,5 bisphosphate-phospholipase C by zona pellucida is modulated by tyrosine phosphorylation. Mol Reprod Dev 43:196–204

    CAS  PubMed  Google Scholar 

  62. Feng H, Sandlow JI, Sandra A (1997) Expression and function of the c-kit proto-oncogene protein in mouse sperm. Biol Reprod 57:194–203

    CAS  PubMed  Google Scholar 

  63. Roldan ER, Shi QX (2007) Sperm phospholipases and acrosomal exocytosis. Front Biosci 12:89–104

    CAS  PubMed  Google Scholar 

  64. Leyton L, LeGuen P, Bunch D, Saling PM (1992) Regulation of mouse gamete interaction by a sperm tyrosine kinase. Proc Natl Acad Sci U S A 89:11692–11695

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Walensky LD, Snyder SH (1995) Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol 130:857–869

    CAS  PubMed  Google Scholar 

  66. Murase T, Roldan ERS (1996) Progesterone and the zona pellucida activate different transducing pathways in the sequence of events leading to diacylglycerol generation during mouse sperm acrosomal exocytosis. Biochem J 320:1017–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Choi D, Lee E, Hwang S et al (2001) The biological significance of phospholipase C beta1 gene mutation in mouse sperm in the acrosome reaction, fertilization and embryo development. J Assist Reprod Genet 18:305–310

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Igarashi H, Knott JG, Schultz RM, Williams CJ (2007) Alterations of PLCβ1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev Biol 312:321–330

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Avazeri N, Courtot AM, Pesty A et al (2000) Cytoplasmic and nuclear phospholipase C-beta 1 relocation: role in resumption of meiosis in the mouse oocyte. Mol Biol Cell 11:4369–4380

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lefèvre B, Pesty A, Courtot AM et al (2007) The phosphoinositide-phospholipase C (PI-PLC) pathway in the mouse oocyte. Crit Rev Eukaryot Gene Expr 17:259–269

    PubMed  Google Scholar 

  71. Tokmakov AA, Sato KI, Iwasaki T, Fukami Y (2002) Src kinase induces calcium release in Xenopus egg extracts via PLCγ and IP3-dependent mechanism. Cell Calcium 32:11–20

    CAS  PubMed  Google Scholar 

  72. Runft LL, Carroll DJ, Gillett J et al (2004) Identification of a starfish egg PLC-γ that regulates Ca2+ release at fertilization. Dev Biol 269:220–236

    CAS  PubMed  Google Scholar 

  73. Yin X, Eckberg WR (2009) Characterization of phospholipases C β and γ and their possible roles in Chaetopterus egg activation. Mol Reprod Dev 76:460–470

    CAS  PubMed  Google Scholar 

  74. Coward K, Kubota H, Parrington J (2007) In vivo gene transfer in testis and sperm: developments and future applications. Arch Androl 53:187–197

    CAS  PubMed  Google Scholar 

  75. Cox LJ, Larman MG, Saunders CM et al (2002) Sperm phospholipase C ζ from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124:611–623

    CAS  PubMed  Google Scholar 

  76. Yoneda A, Kashima M, Yoshida S et al (2006) Molecular cloning, testicular postnatal expression, and oocyte-activating potential of porcine phospholipase C ζ. Reproduction 132:393–401

    CAS  PubMed  Google Scholar 

  77. Grasa P, Coward K, Young C, Parrington J (2008) The pattern of localization of the putative oocyte activation factor, phospholipase C ζ, in uncapacitated, capacitated, and ionophore-treated human spermatozoa. Hum Reprod 23:2513–2522

    CAS  PubMed  Google Scholar 

  78. Young C, Grasa P, Coward K et al (2009) Phospholipase C ζ undergoes dynamic changes in its pattern of localization in sperm during capacitation and the acrosome reaction. Fertil Steril 91:2230–2242

    CAS  PubMed  Google Scholar 

  79. Cooney MA, Malcuit C, Cheon B et al (2010) Species-specific differences in the activity and nuclear localization of murine and bovine phospholipase C ζ 1. Biol Reprod 83:92–101

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Bedford-Guaus SJ, McPartlin LA, Xie J et al (2011) Molecular cloning and characterization of phospholipase C zeta in equine sperm and testis reveals species-specific differences in expression of catalytically active protein. Biol Reprod 85:78–88

    CAS  PubMed  Google Scholar 

  81. Williams RL (1999) Mammalian phosphoinositide-specific phospholipase C. Biochim Biophys Acta 1441:255–267

    CAS  PubMed  Google Scholar 

  82. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    CAS  PubMed  Google Scholar 

  83. Suh PG, Park JI, Manzoli L et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    CAS  PubMed  Google Scholar 

  84. Kouchi Z, Fukami K, Shikano T et al (2004) Recombinant phospholipase Cζ has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem 279:10408–10412

    CAS  PubMed  Google Scholar 

  85. Heytens E, Parrington J, Coward K et al (2009) Reduced amounts and abnormal forms of phospholipase C zeta in spermatozoa from infertile men. Hum Reprod 24:2417–2428

    CAS  PubMed  Google Scholar 

  86. Nomikos M, Elgmati K, Theodoridou M et al (2011) Phospholipase Cζ binding to PtdIns(4,5)P2 requires the XY-linker region. J Cell Sci 124:2582–2590

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Nomikos M, Elgmati K, Theodoridou M et al (2011) Male infertility-linked point mutation disrupts the Ca2+ oscillation-inducing and PIP2 hydrolysis activity of sperm PLCζ. Biochem J 434:211–217

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Kashir J, Konstantinidis M, Jones C et al (2012) A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility. Hum Reprod 27:222–231

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kashir J, Konstantinidis M, Jones C et al (2012) Characterization of two heterozygous mutations of the oocyte activation factor phospholipase C zeta (PLCζ) from an infertile man by use of minisequencing of individual sperm and expression in somatic cells. Fertil Steril 98:423–431

    CAS  PubMed  Google Scholar 

  90. Kurokawa M, Yoon SY, Alfandari D et al (2007) Proteolytic processing of phospholipase Cζ and [Ca2+]i oscillations during mammalian fertilization. Dev Biol 312:407–418

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Nomikos M, Mulgrew-Nesbitt A, Pallavi P et al (2007) Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J Biol Chem 282:16644–16653

    CAS  PubMed  Google Scholar 

  92. Nomikos M, Elgmati K, Theodoridou M et al (2011) Novel regulation of PLCζ activity via its XY-linker. Biochem J 438:427–432

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Yu Y, Nomikos M, Theodoridou M et al (2012) PLC(zeta)ζ causes Ca2+ oscillations in mouse eggs by targeting intracellular and not plasma membrane PI(4,5)P2. Mol Biol Cell 23:371–380

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Phillips S, Yu Y, Rossbach A et al (2011) Divergent effect of mammalian PLC-ζ in generating Ca2+ oscillations in somatic cells versus eggs. Biochem J 438:545–553

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kouchi Z, Shikano T, Nakamura Y et al (2005) The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Cζ. J Biol Chem 280:21015–21021

    CAS  PubMed  Google Scholar 

  96. Fujimoto S, Yoshida N, Fukui T et al (2004) Mammalian phospholipase Cζ induces oocyte activation from the sperm perinuclear matrix. Dev Biol 274:370–383

    CAS  PubMed  Google Scholar 

  97. Kurokawa M, Sato K-I, Wu H et al (2005) Functional, biochemical, and chromatographic characterization of the complete [Ca2+]i oscillation-inducing activity of porcine sperm. Dev Biol 285:376–392

    CAS  PubMed  Google Scholar 

  98. Knott JG, Kurokawa M, Fissore RA et al (2005) Transgenic RNA interference reveals role for mouse sperm phospholipase Cζ in triggering Ca2+ oscillations during fertilization. Biol Reprod 72:992–996

    CAS  PubMed  Google Scholar 

  99. Bedford-Guaus SJ, Yoon SY, Fissore RA et al (2008) Microinjection of mouse phospholipase C ζ complementary RNA into mare oocytes induces long-lasting intracellular calcium oscillations and embryonic development. Reprod Fertil Dev 20:875–883

    CAS  PubMed  Google Scholar 

  100. Ito M, Shikano T, Oda S et al (2008) Difference in Ca2+ oscillation-inducing activity and nuclear translocation ability of PLCZ1, an egg activating sperm factor candidate, between mouse, rat, human, and medaka fish. Biol Reprod 78:1081–1090

    CAS  PubMed  Google Scholar 

  101. Mizushima S, Takagi S, Ono T et al (2008) Developmental enhancement of intracytoplasmic sperm injection (ICSI)—generated quail embryos by phospholipase C ζ cRNA. J Poult Sci 45:152–158

    CAS  Google Scholar 

  102. Yoon SY, Jellerette T, Salicioni AM et al (2008) Human sperm devoid of PLC, ζ 1 fail to induce Ca2+ release and are unable to initiate the first step of embryo development. J Clin Invest 118:3671–3681

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Kashir J, Jones C, Lee HC et al (2011) Loss of activity mutations in phospholipase C zeta (PLCζ) abolishes calcium oscillatory ability of human recombinant protein in mouse oocytes. Hum Reprod 26:3372–3387

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Zegers-Hochschild F, Adamson GD, de Mouzon J et al (2009) The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary on ART terminology, 2009. Hum Reprod 24:2683–2687

    CAS  PubMed  Google Scholar 

  105. Nasr-Esfahani MH, Deemeh MR, Tavalaee M (2010) Artificial oocyte activation and intracytoplasmic sperm injection. Fertil Steril 94:520–526

    PubMed  Google Scholar 

  106. Wilkes S, Chinn DJ, Murdoch A, Rubin G (2009) Epidemiology and management of infertility: a population-based study in UK primary care. Fam Pract 26:269–274

    PubMed  Google Scholar 

  107. Kashir J, Jones C, Coward K (2012) Calcium oscillations, oocyte activation, and phospholipase C zeta. Adv Exp Med Biol 740:1095–1121

    CAS  PubMed  Google Scholar 

  108. Sousa M, Tesarik J (1994) Fertilization and early embryology: ultrastructural analysis of fertilization failure after intracytoplasmic sperm injection. Hum Reprod 9:2374–2380

    CAS  PubMed  Google Scholar 

  109. Swann K, Larman MG, Saunders CM, Lai FA (2004) The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCζ. Reproduction 127:431–439

    CAS  PubMed  Google Scholar 

  110. Swain JE, Pool TB (2008) ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14:431–446

    PubMed  Google Scholar 

  111. Taylor SL, Yoon SY, Morshedi MS et al (2010) Complete globozoospermia associated with PLCzeta deficiency treated with calcium ionophore and ICSI results in pregnancy. Reprod Biomed Online 20:559–564

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Eldar-Geva T, Brooks B, Margalioth EJ et al (2003) Successful pregnancy and delivery after calcium ionophore oocyte activation in a normozoospermic patient with previous repeated failed fertilization after intracytoplasmic sperm injection. Fertil Steril 79:1656–1658

    PubMed  Google Scholar 

  113. Heindryckx B, Gheselle SD, Gerris J et al (2008) Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod Biomed Online 17:662–668

    PubMed  Google Scholar 

  114. Vanden Meerschaut F, Nikiforaki D et al (2012) Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum Reprod 27:1977–1984

    CAS  PubMed  Google Scholar 

  115. Rogers NT, Hobson E, Pickering S et al (2004) Phospholipase Cζ causes Ca2+ oscillations and parthenogenetic activation of human oocytes. Reproduction 128:697–702

    CAS  PubMed  Google Scholar 

  116. Ozil JP, Banrezes B, Toth S et al (2006) Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol 300:534–544

    CAS  PubMed  Google Scholar 

  117. Spadafora C (2004) Endogenous reverse transcriptase: a mediator of cell proliferation and differentiation. Cytogenet Genome Res 105:346–350

    CAS  PubMed  Google Scholar 

  118. Yoon SY, Eum JH, Lee JE et al (2012) Recombinant human phospholipase C ζ 1 induces intracellular calcium oscillations and oocyte activation in mouse and human oocytes. Hum Reprod 27:1768–1780

    CAS  PubMed  Google Scholar 

  119. Nomikos M, Yu Y, Elgmati K et al (2013) Phospholipase Cζ rescues failed oocyte activation in a prototype of male factor infertility. Fertil Steril 99:76–85

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Kashir J, Heynen A, Jones C et al (2011) Effects of cryopreservation and density-gradient washing on phospholipase C ζ concentrations in human spermatozoa. Reprod Biomed Online 23:263–267

    PubMed  Google Scholar 

  121. Kashir J, Jones C, Mounce G et al (2013) Variance in total levels of phospholipase C zeta (PLC-ζ) in human sperm may limit the applicability of quantitative immunofluorescent analysis as a diagnostic indicator of oocyte activation capability. Fertil Steril 99:107–117

    CAS  PubMed  Google Scholar 

  122. Kaewmala K, Uddin MJ, Cinar MU et al (2011) Investigation into association and expression of PLCz and COX-2 as candidate genes for boar sperm quality and fertility. Reprod Domest Anim 47:213–223

    PubMed  Google Scholar 

  123. Nakai M, Ito J, Sato K-I et al (2011) Pre-treatment of sperm reduces success of ICSI in the pig. Reproduction 142:285–293

    CAS  PubMed  Google Scholar 

  124. Lawrence Y, Whitaker M, Swann K (1997) Sperm-egg fusion is the prelude to the initial Ca2+ increase at fertilization in the mouse. Development 124:233–241

    CAS  PubMed  Google Scholar 

  125. Manandhar G, Toshimori K (2003) Fate of postacrosomal perinuclear theca recognized by monoclonal antibody MN13 after sperm head microinjection and its role in oocyte activation in mice. Biol Reprod 68:655–663

    CAS  PubMed  Google Scholar 

  126. Sutovsky P, Manandhar G, Wu A, Oko R (2003) Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 61:362–378

    PubMed  Google Scholar 

  127. Kashir J, Jones C, Child T et al (2012) Viability assessment for artificial gametes: the need for biomarkers of functional competency. Biol Reprod 87:114

    PubMed  Google Scholar 

  128. Kashir J, Sermondade N, Sifer C et al (2012) Motile sperm organelle morphology evaluation-selected globozoospermic human sperm with an acrosomal bud exhibits novel patterns and higher levels of phospholipase C ζ. Hum Reprod 27:3150–3160

    CAS  PubMed  Google Scholar 

  129. Zribi N, Feki Chakroun N, El Euch H et al (2010) Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril 93:159–166

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Coward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kashir, J., Jones, C., Coward, K. (2014). Oocyte Activation and Phospholipase C Zeta (PLCζ): Male Infertility and Implications for Therapeutic Intervention. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_16

Download citation

Publish with us

Policies and ethics