Skip to main content

The Role of Phospholipase C Isozymes in Cellular Homeostasis

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6321 Accesses

Abstract

Phosphoinositide turnover influences various functions such as cell proliferation/differentiation, fertilization, neuronal functions, and cell motility. Phospholipase C (PLC) triggers the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to generate two second messengers, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), and diacylglycerol (DAG). Ins(1,4,5)P3 releases calcium from intracellular stores, and DAG activates protein kinase C (PKC). PI(4,5)P2 also directly regulates various cellular functions, including cytoskeletal remodeling, endocytosis/exocytosis, and channel activity. Imbalances in these phosphoinositides facilitate the pathogenesis of various human diseases. Therefore, precise regulation of the levels of PI(4,5)P2 by PLC or other interconverting enzymes is indispensable for normal cellular functions. Recently several mouse models with genetic-deficits of PLC isozymes have been generated and these analyses revealed the specific functions of each of these isozymes. Taken together with the genome-based information, specific isozymes were found to have a pivotal role in maintaining cellular homeostasis. Since PLC is an intracellular calcium-regulating enzyme, the PLC knockout (KO) mice often show disruption in the calcium homeostasis. This article reviews the regulation of calcium homeostasis by PLC isozymes in fertilization and neuronal functions. PLCKO mice have abnormal cellular proliferation, differentiation, apoptosis, and development, suggesting that PLC isozyme facilitates the determination of cell fate. These physiological regulations are implicated in several cellular functions and play a very important role, especially in tissues with high metabolic turnover such as the skin, colon, hematopoietic cells, and developing embryo. Therefore, the focus of this review is on the physiological functions of PLC isozymes in these cells and on the diseases that are caused by the dysregulation of PLC isozymes and consequent disruption in calcium- and cellular-homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suh PG, Park JI, Manzoli L et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    Article  CAS  PubMed  Google Scholar 

  2. Wassarman PM, Jovine L, Litscher ES (2001) A profile of fertilization in mammals. Nat Cell Biol 3:E59–E64

    Article  CAS  PubMed  Google Scholar 

  3. Saunders CM, Larman MG, Parrington J et al (2002) PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129:3533–3544

    CAS  PubMed  Google Scholar 

  4. Swann K, Lai FA (2013) PLCζ and the initiation of Ca2+ oscillations in fertilizing mammalian eggs. Cell Calcium 53:55–62

    Article  CAS  PubMed  Google Scholar 

  5. Kouchi Z, Fukami K, Shikano T et al (2004) Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem 279:10408–10412

    Article  CAS  PubMed  Google Scholar 

  6. Breitbart H (2002) Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol 187:139–144

    Article  CAS  PubMed  Google Scholar 

  7. Fukami K, Nakao K, Inoue T et al (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292:920–923

    Article  CAS  PubMed  Google Scholar 

  8. Fukami K, Yoshida M, Inoue T et al (2003) Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161:79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kim D, Jun KS, Lee SB et al (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293

    Article  CAS  PubMed  Google Scholar 

  10. Xie W, Gary M, McLaughlin JP et al (1999) Genetic alteration of phospholipase C β3 expression modulates behavioral and cellular responses to μ opioids. Proc Natl Acad Sci U S A 96:10385–10390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hwang JI, Oh YS, Shin KJ et al (2005) Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J 389:181–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nakahara M, Shimozawa M, Nakamura Y et al (2005) A novel phospholipase C, PLCη2, is a neuron-specific isozyme. J Biol Chem 280:29128–29134

    Article  CAS  PubMed  Google Scholar 

  13. Kanemaru K, Nakahara M, Nakamura Y et al (2010) Phospholipase C-η2 is highly expressed in the habenula and retina. Gene Expr Patterns 10:119–126

    Article  CAS  PubMed  Google Scholar 

  14. Hikosaka O, Sesack SR, Lecourtier L, Shepard PD (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28:11825–11829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lo Vasco VR (2011) Role of phosphoinositide-specific phospholipase C η2 in isolated and syndromic mental retardation. Eur Neurol 65:264–269

    Article  CAS  PubMed  Google Scholar 

  16. Blum S, Dash PK (2004) A cell-permeable phospholipase Cgamma1-binding peptide transduces neurons and impairs long-term spatial memory. Learn Mem 11:239–243

    Article  PubMed  Google Scholar 

  17. Bolanos CA, Perrotti LI, Edwards S et al (2003) Phospholipase Cγ in distinct regions of the ventral tegmental area differentially modulates mood-related behaviors. J Neurosci 23:7569–7576

    PubMed  Google Scholar 

  18. Jang HJ, Yang YR, Kim JK et al (2013) Phospholipase C-γ1 involved in brain disorders. Adv Biol Regul 53:51–62

    Article  CAS  PubMed  Google Scholar 

  19. Turecki G, Grof P, Cavazzoni P et al (1998) Evidence for a role of phospholipase C-γ1 in the pathogenesis of bipolar disorder. Mol Psychiatry 3:534–538

    Article  CAS  PubMed  Google Scholar 

  20. Breitkreutz D, Braiman WL, Daum N et al (2007) Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol 133:793–808

    Article  CAS  PubMed  Google Scholar 

  21. Kanemaru K, Nakamura Y, Sato K et al (2012) Epidermal phospholipase Cδ1 regulates granulocyte counts and systemic interleukin-17 levels in mice. Nat Commun 3:963

    Article  PubMed  Google Scholar 

  22. Xie Z, Bikle DD (1999) Phospholipase C-γ1 is required for calcium-induced keratinocyte differentiation. J Biol Chem 274:20421–20424

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura Y, Fukami K, Yu H et al (2003) Phospholipase Cδ1 is required for skin stem cell lineage commitment. EMBO J 22:2981–2991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bikle DD, Ng D, Tu CL, Oda Y et al (2001) Calcium- and vitamin D-regulated keratinocyte differentiation. Mol Cell Endocrinol 77:161–171

    Article  Google Scholar 

  25. Nakamura Y, Ichinohe M, Hirata M et al (2008) Phospholipase C-δ1 is an essential molecule downstream of Foxn1, the gene responsible for the nude mutation, in normal hair development. FASEB J 22:841–849

    Article  CAS  PubMed  Google Scholar 

  26. Runkel F, Aubin I, Simon CD et al (2008) Alopecia and male infertility in oligotriche mutant mice are caused by a deletion on distal chromosome 9. Mamm Genome 19:691–702

    Article  CAS  PubMed  Google Scholar 

  27. Ji QS, Winnier GE, Niswender KD et al (2003) Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc Natl Acad Sci U S A 94:2999–3003

    Article  Google Scholar 

  28. Nakamura Y, Hamada Y, Fujiwara T et al (2005) Phospholipase C-δ1 and -δ3 are essential in the trophoblast for placental development. Mol Cell Biol 25:10979–10988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wells A, Grandis JR (2003) Phospholipase C-gamma1 in tumor progression. Clin Exp Metastasis 20:285–290

    Article  CAS  PubMed  Google Scholar 

  30. Park JB, Lee CS, Jang JH et al (2012) Phospholipase signalling networks in cancer. Nat Rev Cancer 12:782–792

    Article  CAS  PubMed  Google Scholar 

  31. Kim MJ, Kim E, Ryu SH, Suh PG (2000) The mechanism of phospholipase C-gamma1 regulation. Exp Mol Med 32:101–109

    Article  CAS  PubMed  Google Scholar 

  32. Bai Y, Edamatsu H, Maeda S et al (2004) Crucial role of phospholipase Cε in chemical carcinogen-induced skin tumor development. Cancer Res 64:8808–8810

    Article  CAS  PubMed  Google Scholar 

  33. Ikuta S, Edamatsu H, Li M et al (2008) Crucial role of phospholipase C epsilon in skin inflammation induced by tumor-promoting phorbol ester. Cancer Res 68:64–72

    Article  CAS  PubMed  Google Scholar 

  34. Dusaban SS, Purcell NH, Rockenstein E et al (2013) Phospholipase C ε links G protein-coupled receptor activation to inflammatory astrocytic responses. Proc Natl Acad Sci U S A 110:3609–3614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Oka M, Edamatsu H, Kunisada M et al (2010) Enhancement of ultraviolet β-induced skin tumor development in phospholipase Cε-knockout mice is associated with decreased cell death. Carcinogenesis 10:1897–1902

    Article  Google Scholar 

  36. Li F, Yan RQ, Dan X et al (2007) Characterization of a novel tumor-suppressor gene PLCδ1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res 67:10720–10726

    Article  Google Scholar 

  37. Song JJ, Liu Q, Li Y et al (2012) Epigenetic inactivation of PLCD1 in chronic myeloid leukemia. Int J Mol Med 30:179–184

    CAS  PubMed  Google Scholar 

  38. Danielsen SA, Cekaite L, Ågesen TH et al (2011) Phospholipase C isozymes are deregulated in colorectal cancer—insights gained from gene set enrichment analysis of the transcriptome. PLoS One 6:e24419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yuan BZ, Miller MJ, Keck CL et al (1998) Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res 58:2196–2199

    CAS  PubMed  Google Scholar 

  40. Lo Vasco VR, Calabrese G, Manzoli L et al (2004) Inositide-specific phospholipase Cβ1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18:1122–1126

    Article  CAS  PubMed  Google Scholar 

  41. Xiao W, Hong H, Kawakami Y et al (2009) Tumor suppression by phospholipase C-β3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell 16:161–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoko Fukami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fukami, K., Nakamura, Y. (2014). The Role of Phospholipase C Isozymes in Cellular Homeostasis. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_12

Download citation

Publish with us

Policies and ethics