Skip to main content

A Hybrid Multiscale Approach in Cancer Modelling and Treatment Prediction

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

Cancer is a complex multiscale disease involving inter-related processes across a wide range of temporal and spatial scales. Multiscale mathematical models can help in studying cancer progression and serve as an in silico test base for comparing and optimizing various multi-modality anticancer treatment protocols. Here, we discuss one such hybrid multiscale approach, interlinking individual cell behavior with the macroscopic tissue scale. Using this technique, we study the spatio-temporal dynamics of individual cells and their interactions with the tumor microenvironment. At the intracellular level, the internal cell-cycle mechanism is modelled using a system of coupled ordinary differential equations, which determine cellular growth dynamics for each individual cell. The evolution of these individual cancer cells are modelled using a cellular automaton approach. Moreover, we have also incorporated the effects of oxygen distribution into this multiscale model as it has been shown to affect the internal cell-cycle dynamics of the cancer cells. The hybrid multiscale model is then used to study the effects of cell-cycle-specific chemotherapeutic drugs, alone and in combination with radiotherapy, with a long-term goal of predicting an optimal multimodality treatment plan for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Agur, R. Hassin, S. Levy, Optimizing chemotherapy scheduling using local search heuristics. Operat. Res. 54(5), 829–846 (2006)

    Article  MATH  Google Scholar 

  2. M. Al-Tameemi, M. Chaplain, A. d’Onofrio, Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol. Direct 7, 31 (2012)

    Google Scholar 

  3. T. Alarcon, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)

    Article  MathSciNet  Google Scholar 

  4. T. Alarcon, H.M. Byrne, P.K. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229, 395–411 (2004)

    Article  MathSciNet  Google Scholar 

  5. T. Alarcon, H.M. Byrne,, Maini,.: A multiple scale model for tumour growth. Multiscale Model. Sim. 3, 440–475 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alper, T., Howard-Flanders, P.: Role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178(4540), 978–979 (1956)

    Google Scholar 

  7. A. Altinok, F. Levi, A. Goldbeter, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59, 1036–1053 (2007)

    Article  Google Scholar 

  8. V. Andasari, A. Gerisch, G. Lolas, A.P. South, M.A. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63(1), 141–171 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.R. Anderson, M.A. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  MATH  Google Scholar 

  10. J.C. Bailar, H.L. Gornik, Cancer undefeated. N. Engl. J. Med. 336, 1569–1574 (1997)

    Article  Google Scholar 

  11. F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J.P. Boissel, E. Grenier, J.P. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260(4), 545–562 (2009)

    Article  MathSciNet  Google Scholar 

  12. H.M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)

    Article  Google Scholar 

  13. H.M. Byrne, M.A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130(2), 151–181 (1995)

    Article  MATH  Google Scholar 

  14. H.M. Byrne, M.A. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135(2), 187–216 (1996)

    Article  MATH  Google Scholar 

  15. M. Chaplain, A. Anderson, Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat. Res. 117, 51–75 (2004)

    Article  Google Scholar 

  16. M.A. Chaudhry, Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell. Int. 7, 15 (2007)

    Article  Google Scholar 

  17. J. Clairambault, A step toward optimization of cancer therapeutics. Physiologically based modeling of circadian control on cell proliferation. IEEE Eng. Med. Biol. Mag. 27, 20–24 (2008)

    Google Scholar 

  18. A. Dasu, I. Toma-Dasu, M. Karlsson, Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48, 2829–2842 (2003)

    Article  Google Scholar 

  19. N.E. Deakin, M.A. Chaplain, Mathematical modeling of cancer invasion: the role of membrane-bound matrix metalloproteinases. Front. Oncol. 3, 70 (2013)

    Article  Google Scholar 

  20. T.S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011)

    Article  Google Scholar 

  21. S. Dormann, A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. (Gedrukt) 2, 393–406 (2002)

    Google Scholar 

  22. H. Enderling, A.R. Anderson, M.A. Chaplain, A.J. Munro, J.S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer. J. Theor. Biol. 241(1), 158–171 (2006)

    Article  MathSciNet  Google Scholar 

  23. K. Fister, J. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60, 1059–1072 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.B Frieboes, M.E. Edgerton, J.P. Fruehauf, F.R. Rose, L.K. Worrall, R.A. Gatenby, M. Ferrari, V. Cristini, Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res. 69, 4484–4492 (2009)

    Google Scholar 

  25. K. Fu, Biological basis for the interaction of chemotherapeutic agents and radiation therapy. Cancer 55(S9), 2123–2130 (1985)

    Article  Google Scholar 

  26. C. Gerard, A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc. Natl. Acad. Sci. U.S.A. 106, 21,643–21,648 (2009)

    Article  Google Scholar 

  27. A. Gerisch, M.A. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250(4), 684–704 (2008)

    Article  MathSciNet  Google Scholar 

  28. P. Gerlee, A.R. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246, 583–603 (2007)

    Article  MathSciNet  Google Scholar 

  29. N. Goda, H.E. Ryan, B. Khadivi, McNulty, W., Rickert, R.C., Johnson, R.S.: Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol. 23, 359–369 (2003)

    Google Scholar 

  30. A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. U.S.A. 88, 9107–9111 (1991)

    Article  Google Scholar 

  31. M. Guerrero, X.A. Li, Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning. Phys. Med. Biol. 48(20), 3307–3326 (2003)

    Article  Google Scholar 

  32. S. Gupta, T. Koru-Sengul, S.M. Arnold, G.R. Devi, M. Mohiuddin, M.M. Ahmed, Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol. Cancer Ther. 10(2), 292–302 (2011)

    Article  Google Scholar 

  33. C. Hennequin, V. Favaudon, Biological basis for chemo-radiotherapy interactions. European J. Cancer 38(2), 223–230 (2002)

    Article  Google Scholar 

  34. C. Hennequin, N. Giocanti, V. Favaudon, Interaction of ionizing radiation with paclitaxel (Taxol) and docetaxel (Taxotere) in HeLa and SQ20B cells. Cancer Res. 56(8), 1842–1850 (1996)

    Google Scholar 

  35. A.R. Kansal, S. Torquato, G.R. Harsh IV, E.A. Chiocca, T.S. Deisboeck, Cellular automaton of idealized brain tumor growth dynamics. BioSystems 55, 119–127 (2000)

    Article  Google Scholar 

  36. M.A. Konerding, W. Malkusch, B. Klapthor, C. van Ackern, E. Fait, S.A. Hill, C. Parkins, D.J. Chaplin, M. Presta, J. Denekamp, Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80, 724–732 (1999)

    Article  Google Scholar 

  37. F. Levi, A. Okyar, Circadian clocks and drug delivery systems: impact and opportunities in chronotherapeutics. Expert Opin. Drug Deliv. 8(12), 1535–1541 (2011)

    Article  Google Scholar 

  38. F. Levi, A. Okyar, S. Dulong, P.F. Innominato, J. Clairambault, Circadian timing in cancer treatments. Annu. Rev. Pharmacol. Toxicol. 50, 377–421 (2010)

    Article  Google Scholar 

  39. W. Liu, T. Hillen, H. Freedman, A mathematical model for m-phase specific chemotherapy including the g0-phase and immunoresponse. Math. Biosci. Eng. 4(2), 239 (2007)

    Google Scholar 

  40. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Macklin, S. McDougall, A.R. Anderson, M.A. Chaplain, V. Cristini, J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–798 (2009)

    Article  MathSciNet  Google Scholar 

  42. A. Maity, McKenna, W.G., Muschel, R.J.: The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother. Oncol. 31(1), 1–13 (1994)

    Google Scholar 

  43. A. Matzavinos, M.A. Chaplain, V.A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)

    Article  MATH  Google Scholar 

  44. Matzavinos, A., Kao, C.Y., Green, J.E., Sutradhar, A., Miller, M., Friedman, A.: Modeling oxygen transport in surgical tissue transfer. Proc. Natl. Acad. Sci. U.S.A. 106, 12,091–12,096 (2009)

    Google Scholar 

  45. S.R. McDougall, A.R. Anderson, M.A. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  46. H.B. Mistry, D.E. MacCallum, R.C. Jackson, M.A. Chaplain, F.A. Davidson, Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc. Natl. Acad. Sci. U.S.A. 105(51), 20,215–20,220 (2008)

    Article  Google Scholar 

  47. B. Novak, J.J. Tyson, Modelling the controls of the eukaryotic cell cycle. Biochem. Soc. Trans. 31, 1526–1529 (2003)

    Article  Google Scholar 

  48. B. Novak, J.J. Tyson, A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579 (2004)

    Article  MathSciNet  Google Scholar 

  49. M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)

    Article  MathSciNet  Google Scholar 

  50. M.R. Owen, H.M. Byrne, C.E. Lewis, Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391 (2004)

    Article  MathSciNet  Google Scholar 

  51. J. Panetta, J. Adam, A mathematical model of cycle-specific chemotherapy. Math. Comput. Model.22(2), 67–82 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. A.A. Patel, E.T. Gawlinski, S.K. Lemieux, R.A. Gatenby, A cellular automaton model of early tumor growth and invasion. J. Theor. Biol. 213, 315–331 (2001)

    Article  MathSciNet  Google Scholar 

  53. Pawlik, T.M., Keyomarsi, K.: Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59(4), 928–942 (2004)

    Article  Google Scholar 

  54. Perfahl, H., Byrne, H.M., Chen, T., Estrella, V., Alarcon, T., Lapin, A., Gatenby, R.A., Gillies, R.J., Lloyd, M.C., Maini, P.K., Reuss, M., Owen, M.R.: Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS ONE 6, e14,790 (2011)

    Article  Google Scholar 

  55. G. Powathil, M. Kohandel, M. Milosevic, S. Sivaloganathan, Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies. Comput. Math. Meth. Med. 2012, 410,602 (2012)

    Article  Google Scholar 

  56. G.G. Powathil, D.J.A. Adamson, M.A.J. Chaplain, Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: Clinical insights from a computational model. PLOS Computational Biology (To appear) (2013). DOI 10.1371/journal.pcbi.1003120

    Google Scholar 

  57. G.G. Powathil, K.E. Gordon, L.A., Hill, M.A. Chaplain, Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model. J. Theor. Biol. 308, 1–9 (2012)

    Google Scholar 

  58. I. Ramis-Conde, M.A. Chaplain, A.R. Anderson, D. Drasdo, Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 016,008 (2009)

    Google Scholar 

  59. I. Ramis-Conde, D. Drasdo, A.R. Anderson, M.A. Chaplain, Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)

    Article  Google Scholar 

  60. B. Ribba, T. Alarcon, K. Marron, P. Maini, Z. Agur, The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy. Lect. Notes Comput. Sci 3305, 444–453 (2004)

    Article  Google Scholar 

  61. B. Ribba, T. Colin, S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3, 7 (2006)

    Article  Google Scholar 

  62. B. Ribba, K. Marron, Z. Agur, T. Alarcon, P.K. Maini, A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67(1), 79–99 (2005)

    Article  MathSciNet  Google Scholar 

  63. B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J.P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol. 243(4), 532–541 (2006)

    Article  MathSciNet  Google Scholar 

  64. M. Richard, K. Kirkby, R. Webb, N. Kirkby, A mathematical model of response of cells to radiation. Nuclear Instruments and Meth. Phy. Res. Section B: Beam Interactions Mater. Atoms 255(1), 18–22 (2007)

    Article  Google Scholar 

  65. R.K. Sachs, P. Hahnfeld, D.J. Brenner, The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 72(4), 351–374 (1997)

    Article  Google Scholar 

  66. G.K. Schwartz, M.A. Shah, Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005)

    Article  Google Scholar 

  67. G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino, Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)

    Article  Google Scholar 

  68. E. Shochat, D. Hart, Z. Agur, Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Math. Models Meth. Appl. Sci. 9(4), 599–615 (1999)

    Article  MATH  Google Scholar 

  69. M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol. 273(1), 15–31 (2011)

    Article  MathSciNet  Google Scholar 

  70. M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol. 74(7), 1531–1579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. I. Tannock, R. Hill, R. Bristow, L. Harrington, Basic Science of Oncology (MacGraw Hill, Boston 2005)

    Google Scholar 

  72. I. Turesson, J. Carlsson, A. Brahme, B. Glimelius, B. Zackrisson, B. Stenerlow, Biological response to radiation therapy. Acta Oncol 42(2), 92–106 (2003)

    Article  Google Scholar 

  73. S. Turner, J.A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85–100 (2002)

    Article  MathSciNet  Google Scholar 

  74. J.J. Tyson, B. Novak, Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001)

    Article  Google Scholar 

  75. B.G. Wouters, J.M. Brown, Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat. Res. 147(5), 541–550 (1997)

    Article  Google Scholar 

  76. M. Wu, H.B. Frieboes, S.R. McDougall, M.A. Chaplain, V. Cristini, J. Lowengrub, The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J. Theor. Biol. 320, 131–151 (2013)

    Article  MathSciNet  Google Scholar 

  77. L. Zhang, Z. Wang, J.A. Sagotsky, T.S. Deisboeck, Multiscale agent-based cancer modeling. J. Math. Biol. 58(4–5), 545–559 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the ERC Advanced Investigator Grant 227619, M5CGS - From Mutations to Metastases: Multiscale Mathematical Modelling of Cancer Growth and Spread.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. J. Chaplain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powathil, G., Chaplain, M.A.J. (2014). A Hybrid Multiscale Approach in Cancer Modelling and Treatment Prediction. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_8

Download citation

Publish with us

Policies and ethics