Skip to main content

Tumor Microenvironment and Anticancer Therapies: An Optimal Control Approach

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

In this paper, results about the structure of cancer treatment protocols that can be inferred from an analysis of mathematical models with the methods and tools of optimal control are reviewed. For homogeneous tumor populations of chemotherapeutically sensitive cells, optimal controls are bang-bang corresponding to the medical paradigm of maximum tolerated doses (MTD). But as more aspects of the tumor microenvironment are taken into account, such as heterogeneity of the tumor cell population, tumor angiogenesis and tumor-immune system interactions, singular controls which administer agents at specific time-varying reduced dose rates become optimal and give an indication of what might be the biologically optimal dose (BOD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. André, L. Padovani, E. Pasquier, Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy?. Fut. Oncol. 7(3), 385–394 (2011)

    Article  Google Scholar 

  2. T. Boehm, J. Folkman, T. Browder, M.S. O’Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997)

    Article  Google Scholar 

  3. B. Bonnard,, M. Chyba, Singular trajectories and their role in control theory. Mathématiques & Applications, vol. 40 (Springer, Paris 2003)

    Google Scholar 

  4. A. Bressan, A. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences (2007)

    Google Scholar 

  5. S. Davis, G.D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis. Cur. Top. Microbio. Immun. 237, 173–185 (1999)

    Google Scholar 

  6. M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, vol. 30 (Springer, NewYork 1979)

    Google Scholar 

  7. A. Ergun, K. Camphausen, L.M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. Math. Biol. 65, 407–424 (2003)

    Article  Google Scholar 

  8. J. Folkman, Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 295, 1182–1196 (1971)

    Google Scholar 

  9. J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors, Ann. Surg. 175, 409–416 (1972)

    Article  Google Scholar 

  10. J. Folkman, M. Klagsburn, Angiogenic factors. Science 235, 442–447 (1987)

    Google Scholar 

  11. U. Forys, Y. Keifetz, Y. Kogan, Critical-point analysis for three-variable cancer angiogenesis models. Math. Biosci. Eng. 2, 511–525 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden, Adaptive therapy. Canc. Res. 69, 4894–4903 (2009)

    Google Scholar 

  13. J.H. Goldie, Drug resistance in cancer: a perspective. Canc. Meta. Rev. 20, 63–68 (2001)

    Article  Google Scholar 

  14. J.H. Goldie, A. Coldman, Drug Resistance in Cancer (Cambridge University Press, Cambridge 1998)

    Book  Google Scholar 

  15. P. Hahnfeldt, L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations. Radiat. Res. 150, 681–687 (1998)

    Article  Google Scholar 

  16. P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Can. Res. 59, 4770–4775 (1999)

    Google Scholar 

  17. P. Hahnfeldt, J. Folkman, L. Hlatky, Minimizing long-term burden: the logic for metronomic chemotherapy dosing and its angiogenic basis. J. Theo. Biol. 220, 545–554 (2003)

    Article  Google Scholar 

  18. D. Hanahan, G. Bergers, E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000)

    Article  Google Scholar 

  19. R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med., 7, 987–989 (2001)

    Article  Google Scholar 

  20. R.K. Jain, L.L. Munn, Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents, Princ. Pract. Oncol. 21, 1–7 (2007)

    Google Scholar 

  21. B. Kamen, E. Rubin, J. Aisner, E. Glatstein, High-time chemotherapy or high time for low dose? J. Clin. Oncol. 18, Editorial, 2935–2937 (2000)

    Google Scholar 

  22. R.S. Kerbel, Tumor angiogenesis: past, present and near future, Carcinogensis, 21, 505–515 (2000)

    Article  Google Scholar 

  23. T.J. Kindt, B.A. Osborne, R.A. Goldsby, Kuby Immunology (W.H. Freeman, New York 2006)

    Google Scholar 

  24. M. Kimmel, A. Swierniak, Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, in Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer. Lecture Notes in Mathematics, vol. 1872 (Springer, Newyork, 2006), pp. 185–221

    Google Scholar 

  25. M. Klagsburn, S. Soker, VEGF/VPF: the angiogenesis factor found?. Curr. Biol. 3, 699–702, (1993)

    Article  Google Scholar 

  26. G. Klement, S. Baruchel,, Rak, J., Man, S., Clark, K., Hicklin, D.J., Bohlen, P., Kerbel, R.S.: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, J. Clin. Invest. 105, R15–R24 (2000)

    Google Scholar 

  27. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bul. Math. Biol. 56, 295–321 (1994)

    Google Scholar 

  28. U. Ledzewicz, K. Bratton, H. Schättler, A 3-compartment model for chemotherapy of heterogeneous tumor populations. Acta Appl. Matem. (2014) doi: 10.1007/s10440-014-9952-6

    Google Scholar 

  29. U. Ledzewicz, M.S. Faraji Mosalman, H. Schättler, Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost, Discr. Cont. Dyn. Syst. Ser. B 18, 1031–1051 (2013)

    Article  MATH  Google Scholar 

  30. U. Ledzewicz, A. d’Onofrio, H. Schättler, Tumor development under combination treatments with anti-angiogenic therapies. in Mathematical Methods and Models in Biomedicine (Springer, NewYork, 2012), pp. 311–337

    Google Scholar 

  31. U. Ledzewicz, J. Marriott, H. Maurer, H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for novel cancer treatments, Math. Med. Biol. 27, 157–179, (2010).

    Article  MATH  MathSciNet  Google Scholar 

  32. U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–577 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. U. Ledzewicz, H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Th. Appl. 114, 609–637 (2002)

    Article  MATH  Google Scholar 

  34. U. Ledzewicz, H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10, 183–206 (2002)

    Article  MATH  Google Scholar 

  35. U. Ledzewicz, H. Schättler, Optimal control for a bilinear model with recruiting agent in cancer chemotherapy, Proc. of the 42nd IEEE Conference on Decision and Control (CDC), Maui, Hawaii, 2762–2767 (2003)

    Google Scholar 

  36. U. Ledzewicz, H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Math. Biosci. Engr. 2, 561–578 (2005)

    Article  MATH  Google Scholar 

  37. U. Ledzewicz, H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discr. Cont. Dyn. Syst. Ser. B, 6, 129–150 (2006)

    MATH  Google Scholar 

  38. U. Ledzewicz, H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Contr. Optim. 46, 1052–1079 (2007)

    Article  MATH  Google Scholar 

  39. U. Ledzewicz, H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. of Theo. Biol. 252, 295–312, (2008)

    Article  Google Scholar 

  40. U. Ledzewicz, H. Schättler, Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments. J. of Optim. Th. Appl. 153, 195–224 (2012)

    Article  MATH  Google Scholar 

  41. U. Ledzewicz, H. Schättler, M. Reisi Gahrooi, S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for combination cancer chemotherapy. Math. Biosci. Engr. 10, 803–819 (2013)

    Article  MATH  Google Scholar 

  42. L.A. Loeb, A mutator phenotype in cancer. Canc. Res. 61, 3230–3239 (2001)

    Google Scholar 

  43. R. Martin, K.L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy (World Scientific Publishers, Singapore 1994)

    MATH  Google Scholar 

  44. L. Norton, R. Simon, The Norton-Simon hypothesis revisited. Canc. Treat. Rep. 70, 163–169 (1986)

    Google Scholar 

  45. A. d’Onofrio, A general framework for modelling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedial inferences. Phys. D 208, 202–235, (2005)

    Google Scholar 

  46. A. d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 031920 (2007)

    Google Scholar 

  47. A. d’Onofrio, A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al., Math. Biosci. 191, 159–184 (2004)

    Google Scholar 

  48. A. d’Onofrio, A. Gandolfi, The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation. Appl. Math. and Comp. 181, 1155–1162 (2006)

    Google Scholar 

  49. A. d’Onofrio, A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol., 26, 63–95 (2009)

    Google Scholar 

  50. A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theo. Biol. 264, 253–265, (2010)

    Google Scholar 

  51. A. d’Onofrio, A. Gandolfi, A. Rocca, The dynamics of tumour-vasculature interaction suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif., 42, 317–329, (2009)

    Google Scholar 

  52. A. d’Onofrio, U. Ledzewicz, H. Maurer, H. Schättler, On optimal delivery of combination therapy for tumors. Math. Biosci., 222, 13–26 (2009)

    Google Scholar 

  53. A. d’Onofrio, U. Ledzewicz, H. Schättler, On the dynamics of tumor immune system interactions and combined chemo- and immunotherapy, in: New Challenges for Cancer Systems Biomedicine eds. by A. d’Onofrio, P. Cerrai, A Gandolfi, vol. 1 (SIMAI Springer series, 2012). pp. 249–266

    Google Scholar 

  54. D. Pardoll, Does the immune system see tumors as foreign or self? Ann. Rev. Immun. 21, 807–839 (2003)

    Article  Google Scholar 

  55. E. Pasquier, U. Ledzewicz, Perspective on “More is not necessarily better”: Metronomic Chemotherapy. Newslet. Soc. Math. Biol. 26(2), 9–10, (2013)

    Google Scholar 

  56. E. Pasquier, M. Kavallaris, N. André, Metronomic chemotherapy: new rationale for new directions. Nat. Rev. | Clin. Onc. 7, 455–465 (2010)

    Google Scholar 

  57. K. Pietras, D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Onc. 23, 939–952 (2005)

    Article  Google Scholar 

  58. J. Poleszczuk, U. Forys, Derivation of the Hahnfeldt et al. model (1999) revisited, Proceedings of the 16th Nat. Conf. on Applications of Mathematics in Biology and Medicine, Krynica, Poland 87–92 (2010)

    Google Scholar 

  59. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (MacMillan, New York 1964)

    MATH  Google Scholar 

  60. H. Schättler, U. Ledzewicz, B. Cardwell, Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Engr. 8, 355–369 (2011)

    Article  MATH  Google Scholar 

  61. H. Schättler, U. Ledzewicz: Geometric Optimal Control (Springer, NewYork 2012)

    Book  MATH  Google Scholar 

  62. H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi, M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy, Proc. of the 51st IEEE Conf. on Decision and Control, Maui, Hawaii, 7691–7696, (2012)

    Google Scholar 

  63. N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour. Biophys. 24, 917–923 (1980)

    Google Scholar 

  64. G.W. Swan, Role of optimal control in cancer chemotherapy. Math. Biosci., 101, 237–284 (1990)

    Article  MATH  Google Scholar 

  65. J.B. Swann, M.J. Smyth, Immune surveillance of tumors. J. Clin. Invest. 117 1137–1146, (2007)

    Article  Google Scholar 

  66. A. Swierniak, Optimal treatment protocols in leukemia-modelling the proliferation cycle, Proc. of the 12th IMACS World Congress, Paris, vol. 4, 170–172 (1988)

    Google Scholar 

  67. A. Swierniak, Cell cycle as an object of control, J. Biol. Syst. 3, 41–54 (1995)

    Article  Google Scholar 

  68. A. Swierniak, Direct and indirect control of cancer populations. Bul. Pol. Acad. Sci. Techn. Sci. 56, 367–378 (2008)

    Google Scholar 

  69. A. Swierniak, U. Ledzewicz, H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comp. Sci. 13, 357–368 (2003)

    MATH  Google Scholar 

  70. A. Swierniak, A. d’Onofrio, A. Gandolfi, Optimal control problems related to tumor angiogenesis. Proc. IEEE-IECON’2006, 667–681 (2006)

    Google Scholar 

  71. A. Swierniak, J. Smieja, Cancer chemotherapy optimization under evolving drug resistance. Nonlin. Ana. 47, 375–386 (2000)

    Article  MathSciNet  Google Scholar 

  72. H.P. de Vladar, J.A. González, Dynamic response of cancer under the influence of immunological activity and therapy. J. Theo. Biol. 227, 335–348 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under collaborative research Grants Nos. DMS 1311729/1311733. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Ledzewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ledzewicz, U., Schättler, H. (2014). Tumor Microenvironment and Anticancer Therapies: An Optimal Control Approach. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_10

Download citation

Publish with us

Policies and ethics