Skip to main content

Cryo-EM Techniques to Resolve the Structure of HSV-1 Capsid-Associated Components

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1144))

Abstract

Electron cryo-microscopy has become a routine technique to determine the structure of biochemically purified herpes simplex virus capsid particles. This chapter describes the procedures of specimen preparation by cryopreservation; low dose and low temperature imaging in an electron cryo-microscope; and data processing for reconstruction. This methodology has yielded subnanometer resolution structures of the icosahedral capsid shell where α-helices and β-sheets of individual subunits can be recognized. A relaxation of the symmetry in the reconstruction steps allows us to resolve the DNA packaging protein located at one of the 12 vertices in the capsid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W (1999) Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73:3210–3218

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Zhou ZH, Dougherty M, Jakana J, He J, Rixon FJ, Chiu W (2000) Seeing the herpesvirus capsid at 8.5 A. Science 288:877–880

    Article  PubMed  CAS  Google Scholar 

  3. Rochat RH, Liu X, Murata K, Nagayama K, Rixon FJ, Chiu W (2011) Seeing the portal in herpes simplex virus type 1 B capsids. J Virol 85:1871–1874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Schmid MF, Hecksel CW, Rochat RH, Bhella D, Chiu W, Rixon FJ (2012) A tail-like assembly at the portal vertex in intact herpes simplex type-1 virions. PLoS Pathog 8:e1002961

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Roberts AP, Abaitua F, O’Hare P, McNab D, Rixon FJ, Pasdeloup D (2009) Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83:105–116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  PubMed  CAS  Google Scholar 

  7. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  PubMed  CAS  Google Scholar 

  8. Baker ML, Hryc CF, Zhang Q, Wu W, Jakana J, Haase-Pettingell C, Afonine PV, Adams PD, King JA, Jiang W, Chiu W (2013) Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling. Proc Natl Acad Sci USA 110:12301–12306

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jiang W, Baker ML, Jakana J, Weigele PR, King J, Chiu W (2008) Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451:1130–1134

    Article  PubMed  CAS  Google Scholar 

  10. Ludtke SJ, Baker ML, Chen DH, Song JL, Chuang DT, Chiu W (2008) De Novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16:441–448

    Article  PubMed  CAS  Google Scholar 

  11. Yu X, Jin L, Zhou ZH (2008) 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453:415–419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463:379–383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, Baker D, Frydman J, Levitt M, Chiu W (2011) Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure 19:633–639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105:1867–1872

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhou ZH, Chiu W (2003) Determination of icosahedral virus structures by electron cryomicroscopy at subnanometer resolution. Adv Protein Chem 64:93–124

    Article  PubMed  CAS  Google Scholar 

  16. Bammes BE, Jakana J, Schmid MF, Chiu W (2010) Radiation damage effects at four specimen temperatures from 4 to 100 K. J Struct Biol 169:331–341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Langmore JP, Smith MF (1992) Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46:349–373

    Article  PubMed  CAS  Google Scholar 

  18. Rochat RH, Chiu W (2012) Cryo-electron microscopy and tomography of virus particles. In: Comprehensive biophysics, vol 1. Academic Press, pp 311–340

    Google Scholar 

  19. Danev R, Kanamaru S, Marko M, Nagayama K (2010) Zernike phase contrast cryo-electron tomography. J Struct Biol 171:174–181

    Article  PubMed  Google Scholar 

  20. Murata K, Liu X, Danev R, Jakana J, Schmid MF, King J, Nagayama K, Chiu W (2010) Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure 18:903–912

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu X, Rochat RH, Haase-Pettingell C, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA, Chiu W (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502:707–710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Bammes BE, Rochat RH, Jakana J, Chen DH, Chiu W (2012) Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J Struct Biol 177:589–601

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Bai XC, Fernandez IS, McMullan G, Scheres SH (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2:e00461

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ludtke SJ, Nason L, Tu H, Peng L, Chiu W (2003) Object oriented database and electronic notebook for transmission electron microscopy. Microsc Microanal 9:556–565

    Article  PubMed  CAS  Google Scholar 

  26. Rees I, Langley E, Chiu W, Ludtke SJ (2013) EMEN2: an object oriented database and electronic lab notebook. Microsc Microanal 19:1–10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  28. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  PubMed  CAS  Google Scholar 

  29. Good N, Winget G, Winter W, Connolly T, Izawa S, Singh R (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  PubMed  CAS  Google Scholar 

  30. Crowther RA, Amos LA, Finch JT, DeRosier DJ, Klug A (1970) Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421–425

    Article  PubMed  CAS  Google Scholar 

  31. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Nakamura N, Shimizu Y, Liang N, Liu X, Jakana J, Marsh MP, Booth CR, Shinkawa T, Nakata M, Chiu W (2009) JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles. J Struct Biol 165:1–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  34. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  PubMed  CAS  Google Scholar 

  35. Chang J, Liu X, Rochat RH, Baker ML, Chiu W (2012) Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Adv Exp Med Biol 726:49–90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Erickson HP (1973) The Fourier transform of an electron micrograph—first order and second order theory of image formation. Adv Opt Electron Microsc 5:163–199

    CAS  Google Scholar 

  37. Thon F (1971) Phase contrast electron microscopy. In: Electron microscopy in material sciences, Academic, London, p 571–625

    Google Scholar 

  38. Chen DH, Baker ML, Hryc CF, DiMaio F, Jakana J, Wu W, Dougherty M, Haase-Pettingell C, Schmid MF, Jiang W, Baker D, King JA, Chiu W (2011) Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc Natl Acad Sci USA 108:1355–1360

    Article  PubMed Central  PubMed  Google Scholar 

  39. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  PubMed  CAS  Google Scholar 

  40. Liang Y, Ke EY, Zhou ZH (2002) IMIRS: a high-resolution 3D reconstruction package integrated with a relational image database. J Struct Biol 137:292–304

    Article  PubMed  CAS  Google Scholar 

  41. Liu X, Jiang W, Jakana J, Chiu W (2007) Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a Multi-Path Simulated Annealing optimization algorithm. J Struct Biol 160:11–27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125

    Article  PubMed  CAS  Google Scholar 

  43. Guo F, Jiang W (2014) Single particle cryo-electron microscopy and 3-D reconstruction of viruses. Methods Mol Biol 1117:401–443

    Google Scholar 

  44. Fuller SD, Butcher SJ, Cheng RH, Baker TS (1996) Three-dimensional reconstruction of icosahedral particles–the uncommon line. J Struct Biol 116:48–55

    Article  PubMed  CAS  Google Scholar 

  45. Zhou ZH, Chiu W, Haskell K, Spears H Jr, Jakana J, Rixon FJ, Scott LR (1998) Refinement of herpesvirus B-capsid structure on parallel supercomputers. Biophys J 74:576–588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, Dougherty MT, Schmid MF, Osburne MS, Chisholm SW, Chiu W (2010) Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol 17:830–836

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Bowman BR, Baker ML, Rixon FJ, Chiu W, Quiocho FA (2003) Structure of the herpesvirus major capsid protein. EMBO J 22:757–765

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Harauz G, van Heel M (1986) Exact filters for general geometry three dimensional reconstruction. Optik 73:146–156

    Google Scholar 

  50. Saxton WO, Baumeister W (1982) The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc 127:127–138

    Article  PubMed  CAS  Google Scholar 

  51. Liao L, Kuang SQ, Yuan Y, Gonzalez SM, O’Malley BW, Xu J (2002) Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1. J Steroid Biochem Mol Biol 83:3–14

    Article  PubMed  CAS  Google Scholar 

  52. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745

    Article  PubMed  CAS  Google Scholar 

  53. van Heel M, Schatz M (2005) Fourier shell correlation threshold criteria. J Struct Biol 151:250–262

    Article  PubMed  CAS  Google Scholar 

  54. Frangakis AS, Hegerl R (2002) Segmentation of two- and three-dimensional data from electron microscopy using eigenvector analysis. J Struct Biol 138:105–113

    Article  PubMed  Google Scholar 

  55. Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC (2010) Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol 170:427–438

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Volkmann N (2002) A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J Struct Biol 138:123–129

    Article  PubMed  CAS  Google Scholar 

  57. Forster F, Reiner H (2007) Structure determination. In: Situby averaging of tomograms. Methods in cell biology. vol 79. Elsevier, p 741–767

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Robert Welch Foundation (Q1242) and National Institutes of Health (P41GM103832 and R56AI075208 to W.C.; T15LM007093 through the Gulf Coast Consortia and T32GM007330 through the MSTP to R.H.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wah Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rochat, R.H., Hecksel, C.W., Chiu, W. (2014). Cryo-EM Techniques to Resolve the Structure of HSV-1 Capsid-Associated Components. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus. Methods in Molecular Biology, vol 1144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0428-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0428-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0427-3

  • Online ISBN: 978-1-4939-0428-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics