Skip to main content

Preparation of Peptide Microspheres Using Tumor Antigen-Derived Peptides

  • Protocol
  • First Online:
Cancer Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Due to its distinct biological attributes, poly(d,l lactide-co glycolide) (PLGA) is one of the most preferred methods for DNA/protein/peptide encapsulation for therapeutics. Importantly, PLGA acts as an adjuvant for weakly immunogenic antigens and mimics booster responses after a single dose of administration, thereby serving as a single-shot vaccine delivery vehicle. Efficient delivery of antigens to antigen-presenting cells (APC) has been made possible by the use of a PLGA particle-based vaccine delivery system. Also, the plasma half-life of the PLGA-encapsulated vaccine increases as it is protected from degradation, prior to its further release. PLGAs are reported to be catabolized into individual nontoxic units once inside the host and further degraded via normal metabolic pathways. In this chapter, we have described the preparation and characterization of tumor peptide encapsulated PLGA microparticles as a model for controlled-release peptide delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owusu-Ababio G, Rogers JA (1996) Formulation and release kinetics of cephalexin monohydrate from biodegradable polymeric microspheres. J Microencapsul 13(2):195–205

    Article  CAS  PubMed  Google Scholar 

  2. Dinarvand R et al (2006) Preparation, characterization and in vitro drug release properties of polytrimethylene carbonate/polyadipic anhydride blend microspheres. J Appl Polym Sci 101(4):2377–2383

    Article  CAS  Google Scholar 

  3. Shokri N et al (2011) Preparation and evaluation of poly (caprolactone fumarate) nanoparticles containing doxorubicin HC1. Daru 19(1):12–22

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Yousefpour P et al (2011) Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab. Int J Nanomedicine 6:1977–1990

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Dinarvand R et al (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 6:877–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Edlund U, Albertsson AC (2002) Degradable polymer microspheres for controlled drug delivery. Adv Polymer Sci 157:67–112

    Article  CAS  Google Scholar 

  7. Muthu MS (2009) Nanoparticles based on PLGA and its copolymer: an overview. Asian J Pharm 3:266–273

    Article  Google Scholar 

  8. Par T (1994) Degradation of poly (D, L-lactic acid) microspheres: effect of molecular weight. J Control Release 30(2):161–173

    Article  Google Scholar 

  9. Budhian A et al (2007) Haloperidol-loaded PLGA nanoparticles: systemic study of particle size and drug content. Int J Pharm 336: 367–375

    Article  CAS  PubMed  Google Scholar 

  10. Benoit MA et al (1999) Preparation and characterization of protein-loaded poly (ε-caprolactone) microparticle for oral vaccine delivery. Int J Pharm 184:73–84

    Article  CAS  PubMed  Google Scholar 

  11. Cryan SA (2005) Carrier based strategies for targeting protein and peptide drugs to the lungs. AAPS J 7(1):E20–E41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jiang W et al (2005) Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 57:391–410

    Article  CAS  PubMed  Google Scholar 

  13. Khan AA et al (2008) Identifying B and T epitopes and studying humoral, mucosal and cellular immune response of V antigen of Y. pestis. Vaccine 26:316–332

    Article  CAS  PubMed  Google Scholar 

  14. Jayaprakash Babu US et al (2011) Enhanced humoral and mucosal immune responses after intranasal immunization with chimeric multiple antigen peptide comprising of defined epitopes of LcrV antigen of Yersinia pestis coupled to palmitate in mice. Vaccine 29: 9352–9360

    Article  Google Scholar 

  15. Desai MP et al (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    Article  CAS  PubMed  Google Scholar 

  16. Diaz RV et al (1999) One month sustained release microspheres of 125-I-bovine calcitonin: in vitro–in vivo studies. J Control Release 59: 55–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bhatnagar, S., Naqvi, R.A., Ali, R., Rao, D.N. (2014). Preparation of Peptide Microspheres Using Tumor Antigen-Derived Peptides. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics