Skip to main content

Exploiting the CD1d-iNKT Cell Axis for Potentiation of DC-Based Cancer Vaccines

  • Protocol
  • First Online:
Cancer Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Invariant natural killer T cells (iNKT) and dendritic cells (DC) play a central role in tumor immunity through downstream activation of immune effector cells by pro-inflammatory cytokines. Evidence is accumulating that the CD1d-iNKT cell axis can be effectively used to potentiate DC-based cancer vaccines. Here, we provide a detailed methodology for the generation of (CD1d-expressing) monocyte-derived DC (moDC) and their subsequent loading with the iNKT cell agonist α-galactosylceramide (α-GalCer) or their direct ligation by agonistic anti-CD1d monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Vliet HJ et al (2004) The immunoregulatory role of CD1d-restricted natural killer T cells in disease. Clin Immunol 112:8–23

    Article  PubMed  Google Scholar 

  2. Rossjohn J et al (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12:845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Godfrey DI et al (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu L et al (2009) Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. Tissue Antigens 73:535–545

    Article  CAS  PubMed  Google Scholar 

  6. Swann JB et al (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113:6382–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bellone M et al (2010) iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One 5:e8646

    Article  PubMed  PubMed Central  Google Scholar 

  8. Exley MA et al (2011) Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin Immunol 140:184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tahir SM et al (2001) Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 167:4046–4050

    CAS  PubMed  Google Scholar 

  10. Schneiders FL et al (2012) Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up. J Clin Oncol 30:567–570

    Article  PubMed  Google Scholar 

  11. Kawano T et al (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626–1629

    Article  CAS  PubMed  Google Scholar 

  12. Schneiders FL et al (2011) Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol 140:130–141

    Article  CAS  PubMed  Google Scholar 

  13. Giaccone G et al (2002) A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709

    CAS  PubMed  Google Scholar 

  14. Sullivan BA, Kronenberg M (2005) Activation or anergy: NKT cells are stunned by α-galactosylceramide. J Clin Invest 115:2328–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van der Vliet HJ et al (2001) Potent expansion of human natural killer T cells using α-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 247:61–72

    Article  PubMed  Google Scholar 

  16. van der Vliet HJ et al (2003) Polarization of Vα24+ Vβ11+ natural killer T cells of healthy volunteers and cancer patients using α-galactosylceramide-loaded and environmentally instructed dendritic cells. Cancer Res 63:4101–4106

    PubMed  Google Scholar 

  17. Uchida T et al (2008) Phase I study of α-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57:337–345

    Article  CAS  PubMed  Google Scholar 

  18. Chang DH et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nieda M et al (2004) Therapeutic activation of Vα24 + Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389

    Article  CAS  PubMed  Google Scholar 

  20. Yue SC et al (2005) CD1d ligation on human monocytes directly signals rapid NF-κB activation and production of bioactive IL-12. Proc Natl Acad Sci USA 102:11811–11816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yue SC et al (2010) Direct CD1d-mediated stimulation of APC IL-12 production and protective immune response to virus infection in vivo. J Immunol 184:268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Exley MA et al (2008) Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR α-chain CDR3 loop. Eur J Immunol 38:1756–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Babatz J et al (2003) Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study. J Hematother Stem Cell Res 12:515–523

    Article  CAS  PubMed  Google Scholar 

  24. Gerlini G et al (2001) Cd1d is expressed on dermal dendritic cells and monocyte-derived dendritic cells. J Invest Dermatol 117:576–582

    Article  CAS  PubMed  Google Scholar 

  25. Alving CR et al (2012) Adjuvants for human vaccines. Curr Opin Immunol 24:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work is supported by grant no. 90700309 from the Netherlands Organisation for Health Research and Development (ZonMw) and grant VU 2010–4728 from the Dutch Cancer Society (KWF).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lameris, R., Schneiders, F.L., de Gruijl, T.D., van der Vliet, H.J. (2014). Exploiting the CD1d-iNKT Cell Axis for Potentiation of DC-Based Cancer Vaccines. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics