Skip to main content

Measuring Microtubule Growth and Gliding in Caenorhabditis elegans Embryos

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Microtubule plus-tip tracking is a powerful method to measure microtubule growth dynamics in vivo. Here we outline an approach that exploits live confocal microscopy of a GFP-tagged EB1-like protein to measure microtubule growth behavior and minus-end-directed microtubule motor activity at the cortex of Caenorhabditis elegans embryos. The EB1 velocity assay (EVA) provides a method to reproducibly monitor motor- and non-motor-assisted microtubule movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110

    Article  CAS  PubMed  Google Scholar 

  2. Gennerich A, Vale RD (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 21:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vale RD et al (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Howard J, Hunt AJ, Baek S (1993) Assay of microtubule movement driven by single kinesin molecules. Methods Cell Biol 39:137

    Article  CAS  PubMed  Google Scholar 

  5. Billger MA, Bhattacharjee G, Williams RC Jr (1996) Dynamic instability c microtubules assembled from microtubule-associated protein-free tubulin: neither variability of growth and shortening rates nor “rescue” requires microtubule-associated proteins. Biochemistry 35:13656

    Article  CAS  PubMed  Google Scholar 

  6. Cassimeris LU, Walker RA, Pryer NK, Salmon ED (1987) Dynamic instability of microtubules. Bioessays 7:149

    Article  CAS  PubMed  Google Scholar 

  7. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237

    Article  CAS  PubMed  Google Scholar 

  8. Gusnowski EM, Srayko M (2011) Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning. J Cell Biol 194:377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maddox AS, Maddox PS (2012) High-resolution imaging of cellular processes in Caenorhabditis elegans. Methods Cell Biol 107:1

    Article  PubMed  Google Scholar 

  10. Bossinger O, Cowan CR (2012) Methods in cell biology: analysis of cell polarity in C. elegans embryos. Methods Cell Biol 107:207

    Article  CAS  PubMed  Google Scholar 

  11. Boyd L, Hajjar C, O’Connell K (2011) Time-lapse microscopy of early embryogenesis in Caenorhabditis elegans. J Vis Exp Aug 25;(54) pii 2852. doi: 10.3791/2852. PMID: 21897352

  12. Fabritius AS, Ellefson ML, McNally FJ (2011) Nuclear and spindle positioning during oocyte meiosis. Curr Opin Cell Biol 23:78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Oegema K, Hyman AA (2006) Cell division. WormBook 1

    Google Scholar 

  14. Edgar LG, McGhee JD (1986) Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Dev Biol 114:109

    Article  CAS  PubMed  Google Scholar 

  15. Kwok BH, Kapoor TM (2007) Microtubule flux: drivers wanted. Curr Opin Cell Biol 19:36

    Article  CAS  PubMed  Google Scholar 

  16. Labbe JC, Maddox PS, Salmon ED, Goldstein B (2003) PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr Biol 13:707

    Article  CAS  PubMed  Google Scholar 

  17. Labbe JC, McCarthy EK, Goldstein B (2004) The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. J Cell Biol 167:245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Waterman-Storer CM, Salmon ED (1997) Microtubule dynamics: treadmilling comes around again. Curr Biol 7:R369

    Article  CAS  PubMed  Google Scholar 

  19. Kozlowski C, Srayko M, Nedelec F (2007) Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129:499

    Article  CAS  PubMed  Google Scholar 

  20. Piehl M, Cassimeris L (2003) Organization and dynamics of growing microtubule plus ends during early mitosis. Mol Biol Cell 14:916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ozlu N et al (2005) An essential function of the C. elegans ortholog of TPX2 is to localize activated aurora A kinase to mitotic spindles. Dev Cell 9:237

    Article  PubMed  Google Scholar 

  22. Srayko M, Kaya A, Stamford J, Hyman AA (2005) Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell 9:223

    Article  CAS  PubMed  Google Scholar 

  23. Sironi L et al (2011) Automatic quantification of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators. Cytoskeleton (Hoboken) 68:266

    Article  CAS  Google Scholar 

  24. Matov A et al (2010) Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7:761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    Article  CAS  PubMed  Google Scholar 

  26. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182

    Article  CAS  PubMed  Google Scholar 

  27. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157:1217

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. J Cell Sci 125:2561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Srayko M, O’Toole ET, Hyman AA, Muller-Reichert T (2006) Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr Biol 16:1944

    Article  CAS  PubMed  Google Scholar 

  30. Clark-Maguire S, Mains PE (1994) Localization of the mei-1 gene product of Caenorhabditis elegans, a meiotic-specific spindle component. J Cell Biol 126:199

    Article  CAS  PubMed  Google Scholar 

  31. O’Toole E, Greenan G, Lange KI, Srayko M, Muller-Reichert T (2012) The role of gamma-tubulin in centrosomal microtubule organization. PLoS One 7:e29795

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Srayko Lab for discussions and comments on this article. This work was supported by the Canadian Institutes of Health Research (CIHR) and Alberta Innovates Technology Futures. M.S. was supported by scholar awards from the Alberta Heritage Foundation for Medical Research and CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Srayko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tegha-Dunghu, J., Gusnowski, E.M., Srayko, M. (2014). Measuring Microtubule Growth and Gliding in Caenorhabditis elegans Embryos. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics