Skip to main content

Recent Advances in Ionic Liquids for Lithium Secondary Batteries

  • Chapter
  • First Online:
Electrolytes for Lithium and Lithium-Ion Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 58))

Abstract

Ionic liquids (ILs) composed only of ionic species without any organic molecules possess various unique properties such as reduced flammability, reduced volatility, and a relatively high ionic conductivity at ambient temperature. The existence of ILs has become especially popular in various fields during the past two decades due to the discovery of moisture-insensitive ILs based on perfluoroanions—such as tetrafluoroborate [BF4], and bis(trifluoromethylsulfonyl)amide [(CF3SO2)2N], denoted as Tf2N—which are easy to prepare and handle under atmospheric conditions [1]. At the same time, these perfluoroanions have attracted attention as a nonflammable electrolyte for various electrochemical energy devices, especially for lithium secondary batteries, because these perfluoroanions have already been examined as a counter anion for lithium salts [2]. The number of papers about battery applications using these ILs has increased during the past decade since early reports indicated their compatibility with conventional composite electrodes such as lithium cobalt dioxide, LiCoO2 [3–5]. Although various cathodes and anodes, and almost all composite electrodes, have been investigated, except for one carbon-based anode found to be compatible with these ILs, their performance, especially their rate performance, was found to be quite deficient compared to a conventional organic electrolyte. During the past decade, only a few anionic species have been developed to solve various defects derived from the conventional ILs. In particular, one of these new anions, bis(fluorosulfonyl)amide, denoted as [(FSO2)2N], dramatically reverses the poor impression of ILs as a lithium battery electrolyte [6–9]. Recent research on the thermal stability of ILs, which have been seriously investigated since the appearance of new ILs composed of [(FSO2)2N], revealed that the ILs are indeed harder to ignite; however, once ignited by an external source of energy, significantly high heat release occurs when the ILs burn under forced conditions [10]. Furthermore, not all ILs exhibited an expected safety feature as a nonflammable electrolyte under severe conditions such as the charged state [11, 12]. However, such facts have not reduced motivation for studying ILs as a battery electrolyte because various new results on next-generation batteries, which do not operate well in a conventional organic electrolyte, are beginning to be published, for example, Li-Air [13, 14], Li-S [15], and sodium secondary batteries [16]. In this chapter, the recent progress regarding the study of ILs for a lithium battery system will be briefly described. Especially, the course of development of new anionic species during the past decade will be the focus in order to demonstrate the difference between these new anions and a conventional anion, such as [(CF3SO2)2N] or [BF4]. Since there are many reports on the ILs for use as a battery electrolyte and also their basic electrochemical properties, all the reports could not be referred in this chapter, but several books and reviews are recommended [17–21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clare B.; Sirwardana A.; MacFarlane D.R., Synthesis, Purification and Characterization, In Ionic Liquids, Topics in Current Chemistry; Kirchner B., Ed.; Springer-Verlag, Berlin, Heidelberg, 2009; Vol. 290; 1-40.

    Google Scholar 

  2. Electrochemical Aspects of Ionic Liquids second edition; Ohno H., Ed.; John Wiley & Sons, Hoboken, New Jersey, 2011.

    Google Scholar 

  3. Sakaebe H.; Matsumoto, H., N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) - novel electrolyte base for Li battery, Electrochem. Commun., 2003, 5, 594-598.

    Article  Google Scholar 

  4. Nakagawa H.; Izuchi S.; Kuwana K.; Nukuda T.; Aihara Y., Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt, J. Electrochem. Soc., 2003, 150, A695-A700.

    Article  Google Scholar 

  5. Garcia B.; Lavallee S.; Perron G.; Michot C.; Armand M., Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 2004, 49 4583-4588.

    Article  Google Scholar 

  6. Matsumoto, H.; Sakaebe H.; Tatsumi K.; Kikuta M.; Ishiko E.; Kono M., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-, J. Power Sources, 2006, 160, 1308-1313.

    Article  Google Scholar 

  7. Ishikawa, M.; Sugimoto T.; Kikuta M.; Ishiko E.; Kono M., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries, J. Power Sources, 2006, 162, 658-662.

    Article  Google Scholar 

  8. Guerfi, A.; Duchesne, S.; Kobayashi, Y.; Vijh A.; Zaghib, K., LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI-) for Li-ion batteries, J. Power Sources, 2008, 175, 866-873.

    Article  Google Scholar 

  9. Zhou, Q.; Henderson, W.A.; Appetecchi, G.B.; Montanino, M.; Passerini, S.; Physical and Electrochemical Properties of N-Alkyl-N-methylpyrrolidinium Bis(fluorosulfonyl)imide Ionic Liquids: PY13FSI and PY14FSI, J. Phys. Chem., 2008, 112, 13577-13580.

    Article  Google Scholar 

  10. Diallo, A-O.; Morgan, A.B.; Len, C.; Marlair G., An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids, Energy & Environ. Sci., 2013, 6, 699-710.

    Article  Google Scholar 

  11. Wang, Y.D.; Zaghib, K.; Guerfi, A.; Bazito, F.F.C.; Torresi, R.M.; Dahn, J.R., Electrochim. Acta., 2007, 52, 6346-6352.

    Article  Google Scholar 

  12. Ue, M.; Tokuda, H.; Kawai, T.; Yanagidate, M., Otake Y., Thermal Behavior of Ionic Liquid Electrolytes in Lithium-ion Cells, ECS Trans., 2009, 16(35), 1731-181.

    Google Scholar 

  13. Kuboki, T; Okuyama, T; Ohsaki, T; Takami, N, Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte, J. Power Sources, 2004, 146, 766-769.

    Article  Google Scholar 

  14. Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H., Rechargeable Li–air batteries with carbonate-based liquid electrolytes., Electrochemistry, 2010, 78, 403–405.

    Article  Google Scholar 

  15. Wang, J.; Chew, S.Y.; Zhao, Z.W.; Ashraf, S.; Wexler, D.; Chen, J.; Ng, S.H.; Chou, S.L.; Liu, H.K., Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon, 2008, 46, 229-235.

    Article  MATH  Google Scholar 

  16. Nohira, T.; Kuroda, K.; Hagiwara, R.; Fukunaga, A.; Sakai, S.; Nitta, K.; Inazawa, S. NaFSA-C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range, J. Power Sorces, 2013, 238, 296-300.

    Article  Google Scholar 

  17. Armand, M; Endres, F.; MacFarlane D.R.; Ohno H.; Scrosati B., Ionic-liquid materials for the electrochemical challenges of the future, Nature Mat., 2009, 8, 621-629.

    Article  Google Scholar 

  18. Lewandowski A.; Świderska-Mocek A., Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, J. Power Sorces, 2009, 194, 601-609.

    Article  Google Scholar 

  19. Trulove P. C.; Mantz R.A., Electrochemical Properties of Ionic Liquids, In Ionic Liquids in Synthesis, Topics Second, Completely Revised and Enlarged Edition; Wasserscheid P.; Welton T., Ed.; Wiley-VCH: Weinheim, Germany, 2008; 141-174.

    Google Scholar 

  20. Matsumoto H., Electrochemical Windows of Room-Temperature Ionic Liquids (RTILs), In Electrochemical Aspects of Ionic Liquids second edition; Ohno H., Ed.; John Wiley & Sons: Hoboken, New Jersey, 2011; 43-63.

    Chapter  Google Scholar 

  21. Sakaebe H.; Matsumoto H., Li Batteries, In Electrochemical Aspects of Ionic Liquids second edition; Ohno H., Ed.; John Wiley & Sons: Hoboken, New Jersey, 2011; 205-220.

    Google Scholar 

  22. Wilkes, J.S.; Zaworotko, M.J., Air and water stable 1-methyl-3-ethylimidazolium based ionic liquids, J. Chem. Soc., Chem. Comm., 1992, 965-967.

    Google Scholar 

  23. Bônhote, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, 35, 1168-1178.

    Article  Google Scholar 

  24. MacFarlane, D.R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M., Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases, J. Phys. Chem. B, 1999, 103, 4164-4170.

    Article  Google Scholar 

  25. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A.B., Thermal properties of imidazolium ionic liquids, Thermochimica Acta,2000, 357-358, 97-102.

    Article  Google Scholar 

  26. Sato, T.; Masuda, G.; Takagi, K., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electochim. Acta, 2004, 49, 3606-3611.

    Article  Google Scholar 

  27. Zhou, Z-B., Matsumoto, H., Tatsumi, K., Low-melting, low-viscous, hydrophobic ionic liquids: Aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates, Chem. Eur. J., 2005, 11, 752-766.

    Article  Google Scholar 

  28. Matsumoto, H.; Miyazaki, Y.; Ishikawa, H., Japan Patent Kokai 1999-297355: 1999.

    Google Scholar 

  29. Matsumoto, H.; Yanagida, Y.; Tanimoto, T.; Kojima, Y.; Tamiya, Y.; Miyazaki, Y., Improvement of ionic conductivity of room temperature molten salt based on quaternary ammonium cation and imide anion, In Molten Salts XII Proceedings of the International Symposium, Trulove, P.C.; De Long, H. C.;, Stafford, G. R.; Deki, S., Ed.; The Electrochemical Society Proceeding Series, The Electrochemical Society, Pennington, NJ, 2000; PV99-41, 186-192.

    Google Scholar 

  30. Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F., High lithium metal cycling efficiency in a room-temperature ionic liquid, Electochem. Solid-State Lett., 2004, 7, A97-A101.

    Article  Google Scholar 

  31. Matsumoto, H.; Kageyama, H.; Miyazaki, Y., Effect of ionic additives on the limiting cathodic potential of EMI-based room temperature ionic liquids, Electrochemistry, 2005, 71, 1058-1060.

    Google Scholar 

  32. Howlett, P. C.; Izgorodina, E. I.; Forsyth, M.; MacFarlane, D. R., Electrochemistry at negative potentials in bis(trifluoromethanesulfonyl)amide ionic liquids, Z. Phys. Chem., 2006, 220, 1483-1498.

    Article  Google Scholar 

  33. Endres, F.; Borisenko, N.; El Abedin, S.Z.; Hayes, R.; Atkin, R., The interface ionic liquid(s)/electrode(s): In situ STM and AFM measurements, Faraday Dsicuss., 2012, 154, 221-233.

    Article  Google Scholar 

  34. Lassègues, J.-C.; Grondin, J.; Talaga, D., Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids, Phys. Chem. Chem. Phys., 2006, 8, 5629-5632.

    Article  Google Scholar 

  35. Katayama, Y.; Yukumoto, M.; Miura, T.; Electrochem. Solid-State Lett., 2003, 6, A96-A97.

    Article  Google Scholar 

  36. Holzapfel, M.; Jost, C.; Prodi-Schwab, A.; Krumeich, F.; Wursig, A.; Buqa, H.; Novak, P., Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study, Carbon, 2005, 43, 1488-1498.

    Article  Google Scholar 

  37. Matsumoto, H.; Kageyama H.; Miyazaki Y., Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions, Chem. Commun., 2002, 16, 1726-1727.

    Article  Google Scholar 

  38. Matsumoto, H.; Sakaebe, H.; Tatsumi, K., Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte, J. Power Source., 2005, 146, 45-50.

    Article  Google Scholar 

  39. Appecchi, G.B.; Scaccia, S.; Tizzani, C.; Alessandrini, F.; Passerini, S., Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications, J. Electrochem. Soc., 2006, 153, A1685-A1691.

    Article  Google Scholar 

  40. Matsumoto, H.; Terasawa, N.; Umecky, T.; Tsuzuki, S.; Sakaebe, H.; Asaka, K.; Tatsumi, K., Low Melting and Electrochemically Stable Ionic Liquids Based on Asymmetric Fluorosulfonyl(trifluoromethylsulfonyl)amide Chem. Lett., 2008, 37, 1020-1021.

    Article  Google Scholar 

  41. Liu, K.; Zhou, Y-X.; Han, H-B.; Zhou, S-S.; Feng, W-F.; Nie, J.; Li, H.; Huang, X-J.; Armand, M., Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums, Electrochim. Acta., 2010, 55, 7145-7151.

    Article  Google Scholar 

  42. Ignat’ev, N.V.; Welz-Biermann, U.; Kucheryna, A.; Bissky, G.; Willner, H., New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions, J. Fluorine Chem., 2005, 126, 1150-1169.

    Article  Google Scholar 

  43. Zhou, Z-B.; Takeda, M.; Ue, M., New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions, J. Fluorine Chem., 2003, 125, 471-476.

    Article  Google Scholar 

  44. Zhou, Z-B.; Matsumoto, H.; Tatsumi, K., Low-viscous, low-melting, hydrophobic ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethyltrifluoroborate, Chem. Lett., 2004, 33, 680-681.

    Article  Google Scholar 

  45. Terasawa, N.; Tsuzuki, S.; Umecky, T.; Saito, Y.; Matsumoto, H., Alkoxy chains in ionic liquid anions; effect of introducing ether oxygen into perfluoroalkylborate on physical and thermal properties, Chem. Commun., 2010, 46, 1730-1732.

    Article  Google Scholar 

  46. Zhou, Z-B.; Matsumoto, H.; Tatsumi, K., Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: Synthesis, characterization, and properties, Chem. Eur. J., 2006, 12, 2196-2212.

    Article  Google Scholar 

  47. Schmidt, M.; Heider, U.; Kuehner, A.; Oesten, R.; Jungnitz, M.; Ignat’ev, N.; Saroti, P., Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries, J. Power Sources, 2001, 97, 557-560.

    Article  Google Scholar 

  48. Matsumoto, H.; Sakaebe, H.; Tatsumi, K., Li/LiCoO2 Cell Performance Using Ionic Liquids Composed of N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium - Effect of Anionic Structure, ECS Trans., 2009, 16(35), 59-66.

    Article  Google Scholar 

  49. Tsuzuki, S.; Umecky, T.; Matsumoto, H.; Shinoda, W.; Mikami, M., Interactions of Perfluoroalkyltrifluoroborate Anions with Li Ion and Imidazolium Cation: Effects of Perfluoroalkyl Chain on Motion of Ions in Ionic Liquids, J. Phys. Chem. B, 2010, 114, 11390-11396.

    Article  Google Scholar 

  50. Matsumoto, H., Yanagida, M.; Tanimoto, K.; Nomura, K.; Kitagawa, Y.; Miyazaki, Y., Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide, Chem. Lett., 2000, 29, 922-923.

    Article  Google Scholar 

  51. Tsuzuki, S.; Hayamizu, K.; Seki, S., Origin of the Low-Viscosity of [emim][(FSO2)2N] Ionic Liquid and Its Lithium Salt Mixture: Experimental and Theoretical Study of Self-Diffusion Coefficients, Conductivities, and Intermolecular Interactions, J. Phys. Chem. B, 2010, 114, 16329-16336.

    Article  Google Scholar 

  52. Valencia, H.; Kohyama, M.; Tanaka, S.; Matsumoto, H., First-Principles Study of EMIM-FAFSA Molecule Adsorption on a Li(100) Surface as a Model for Li-Ion Battery Electrodes, J. Phys. Chem. C, 2012, 116, 8493-8509.

    Article  Google Scholar 

  53. Hayamizu, K.; Tsuzuki S.; Seki, S.; Umebayashi, Y., Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts, J. Chem. Phys., 2011, 135, 084505.

    Article  Google Scholar 

  54. Matsumoto, H.; Terasawa N.; Tsuzuki S.; Sakaebe H., Charge and Discharge Property of Li/LiCoO2 Cell Using Ionic Liquids Composed of N,N-Diethyl-N-Methyl-N-(2-Methoxyethyl)Ammonium and Fluorosulfonyl (Trifluoromethylsulfonyl) Amide, ECS Trans., 2011, 33(28), 37-42.

    Article  Google Scholar 

  55. Matsumoto, H.; Terasawa N.; Tsuzuki S.; Sakaebe H., Ionic liquids; WO 2009/136608 A1: 2009.

    Google Scholar 

  56. Kubota, K; Matsumoto, H., Melting and Crystallization Behaviors of Alkali Metal (Fluorosulfonyl)(trifluoromethylsulfonyl)amides, Chem. Lett., 2011, 40, 1105-1106.

    Article  Google Scholar 

  57. Kubota, K.; Matsumoto, H., Investigation of an Intermediate Temperature Molten Lithium Salt Based on Fluorosulfonyl(trifluoromethylsulfonyl)amide as a Solvent-Free Lithium Battery Electrolyte, J. Phys. Chem. C, 2013, 117, 18829-18836.

    Article  Google Scholar 

  58. Zhou, Z-B.; Takeda, M.; Ue, M., Novel electrolyte salts based on perfluoroalkyltrifluoroborate anions: 1. Synthesis and characterization, J. Fluorine Chem., 2003, 123, 127-131.

    Article  Google Scholar 

  59. Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S.M.; Grätzel, M., Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte, J. Am. Chem. Soc., 2006, 128, 7732-7733.

    Article  Google Scholar 

  60. Zheng, H.; Zhang, H.; Fu, Y.; Abe, T.; Ogumi, Z., Temperature Effects on the Electrochemical Behavior of Spinel LiMn2O4 in Quaternary Ammonium-Based Ionic Liquid Electrolyte, J. Phys. Chem. B, 2005, 109, 13676-13684.

    Article  Google Scholar 

  61. Tsunashima, K.; Yonekawa, F.; Sugiya, M., Lithium Secondary Batteries Using a Lithium Nickelate-Based Cathode and Phosphonium Ionic Liquid Electrolytes, Electochem. Solid-State Lett., 2009, 12, A54-A57.

    Article  Google Scholar 

  62. Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, J. Power Sources, 2009, 189, 331-336.

    Article  Google Scholar 

  63. Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita Y.; Watanabe, M.; Terada, N., Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material, Chem. Commun., 2006, 544-545.

    Google Scholar 

  64. Reale, P.; Femicola, A.; Scrosati, B., Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes, J. Power Sources, 2009, 194, 182-189.

    Article  Google Scholar 

  65. Usui, H.; Yamamoto, Y.; Yoshiyama, K.; Itoh, T.; Sakaguchi, H., Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery, J. Power Sources, 2011, 196, 3911-3915.

    Article  Google Scholar 

  66. Saruwatari, H.; Kuboki, T.; Kishi T.; Mikoshiba, S.; Takami, N., Imidazolium ionic liquids containing LiBOB electrolyte for lithium battery, J. Power Sources, 2010, 195, 1495-1499.

    Article  Google Scholar 

  67. Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K., Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells, J. Power Sources, 2007, 174, 1021-1026.

    Article  Google Scholar 

  68. Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K., Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance, J. Power Sources, 2010, 195, 845-852.

    Article  Google Scholar 

  69. Lombardo, L.; Brutti, S.; Navarra, M.A.;Panero, S.; Reale, P., Mixtures of ionic liquid – Alkylcarbonates as electrolytes for safe lithium-ion batteries, J. Power Sources, 2013, 227, 8-14.

    Article  Google Scholar 

  70. Tarascon, J-M.; Recham, N.; Armand, M.; Chotard, J-N.; Barpanda, P.; Walker, W.; Dupont, L., Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis, Chem. Matter., 2010, 22, 724-739.

    Article  Google Scholar 

  71. Li, C.; Gu, L.; Tsukamoto S.; van Aken, P.A.; Maier J., Low-Temperature Ionic-Liquid-Based Synthesis of Nanostructured Iron-Based Fluoride Cathodes for Lithium Batteries, Adv, Mater., 2010, 22, 3650-3654.

    Article  Google Scholar 

  72. Kim, G.-T.; Jeong, S. S.; Xue, M.-Z.; Balducci, A.; Winter, M.; Passerini, S.; Alessandrini, F.; Appetecchi, G. B., Development of ionic liquid-based lithium battery prototypes, J. Power Sources., 2012, 199, 239-246.

    Article  Google Scholar 

  73. Balducci, A.; Jeong, S. S.; Kim, G.-T.; Passerini, S.; Winter, M.; Schmuck, M.; Appetecchi, G. B.; Marcilla, R.; Mecerreyes, D.; Barsukov, V.; Khomenko, V.; Cantero, I.; De Meatza, I.; Holzapfgel, M.; Tran, N., Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project), J. Power Sources., 2011, 196, 9719-9730.

    Article  Google Scholar 

  74. Huang, J.; Hollenkamp, A. F., Thermal Behavior of Ionic Liquids Containing the FSI Anion and the Li+ Cation, J. Phys. Chem. C, 2010, 114, 21840-21847.

    Article  Google Scholar 

  75. Reiter, J.; Nádherná, M.; Dominko, R., Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries, J. Power Sources., 2012, 205, 402-407.

    Article  Google Scholar 

  76. Yamagata, M.; Matsui, Y.; Sugimoto, T.; Kikuta, M.; Higashizaki, T.; Kono, M.; Ishikawa, M., High-performance graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid, J. Power Sources., 2013, 227, 60-64.

    Article  Google Scholar 

  77. Earle, M. J.; Esperança, J. M. S. S.; Gilea, M. A.; Canongia Lopes, J. N.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A., The distillation and volatility of ionic liquids, Nature, 2006, 439, 831-834.

    Article  Google Scholar 

  78. Egashira, M.; Tanaka-Nakagawa, M.; Watanabe, I.; Okada, S.; Yamaki, J., Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation, J. Power Sources., 2006, 160, 1387-1390.

    Article  Google Scholar 

  79. Sakaebe, H.; Matsumoto, H.; Tatsumi, K., Application of room temperature ionic liquids to Li batteries, Electrochim. Acta, 2007, 53, 1048-1054.

    Article  Google Scholar 

  80. Larush, L.; Borgel, V.; Markevich, E.; Haik, O.; Zinigrad, E.; Aurbach, D.; Semrau, G.; Schmidt, M., On the thermal behavior of model Li–LixCoO2 systems containing ionic liquids in standard electrolyte solutions, J. Power Sources., 2009, 189, 217-223.

    Article  Google Scholar 

  81. Profatilova, I. A.; Choi, N-S.; Roh, S. W.; Kim, S. S., Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids, J. Power Sources., 2009, 192, 636-643.

    Article  Google Scholar 

  82. Plashnitsa, L.; Kobayashi, E.; Okada, S.; Yamaki, J., Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte, Electrochim. Acta, 2011, 56, 1344-1351.

    Article  Google Scholar 

  83. Henderson, W.A.; Passerini, S., Phase Behavior of Ionic Liquid–LiX Mixtures: Pyrrolidinium Cations and TFSI-Anions, Chem. Mater., 2004, 16, 2881-2885.

    Google Scholar 

  84. MacFarlane D.R.; Forsyth, M.; Howlett, P. C.; Pringle, J. M.; Sun, J.; Annat, G.; Neil, W., Izgorodina, E. I., Ionic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry, Acc. Chem. Res., 2007, 40, 1165-1173.

    Article  Google Scholar 

  85. Peng, C.X.; Yang, L.; Zhang, Z.X.; Tachibana, K.; Yang, Y., Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes, J. Power Sources., 2007, 173, 510-517.

    Article  Google Scholar 

  86. Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T., Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media, J. Power Sources., 2010, 195, 6069-6074.

    Article  Google Scholar 

  87. Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z., Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte, J. Electrochem. Soc., 2004, 151, A1120-A1123.

    Article  Google Scholar 

  88. Borodin, O.; Smith, G.D., Henderson, W., Li+ Cation Environment, Transport, and Mechanical Properties of the LiTFSI Doped N-Methyl-N-alkylpyrrolidinium + TFSI-Ionic Liquids, J. Phys. Chem. B, 2006, 110, 16879-16886.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsumoto, H. (2014). Recent Advances in Ionic Liquids for Lithium Secondary Batteries. In: Jow, T., Xu, K., Borodin, O., Ue, M. (eds) Electrolytes for Lithium and Lithium-Ion Batteries. Modern Aspects of Electrochemistry, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0302-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0302-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0301-6

  • Online ISBN: 978-1-4939-0302-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics