Skip to main content

Acute and Lingering Impairments in Post-concussion Postural Control

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

The fourth International Consensus Statement on Concussion in Sport reports that 80–90 % of concussions recover in 7–10 days. Impairments in postural control are a cardinal symptom following a sports-related concussion; however, many studies suggest that these impairments resolve within 3–5 days post-injury. Multiple recent studies, utilizing diverse and sophisticated research paradigms, are suggesting that this may be premature and that prolonged recovery could be normal. Therefore, the overarching purpose of the studies reported herein is to investigate impairments in postural control following a concussion and to identify recovery. We investigated the efficacy of “non-novel” tasks including gait initiation, gait variability, gait termination, and static stance and track the individual’s performance across time to identify residual impairments compared to performance on the standard clinical assessment battery. In the acute aftermath of a concussion, the subjects demonstrated substantial impairments in postural control across all tasks which are consistent with a multiple previous investigations. However, the novel findings were the identification of persistent and lingering impairments in postural control which were present despite apparent full recovery on all clinical measures. Specifically, the impairments were more apparent when evaluating central control mechanisms (e.g., movement strategies and anticipatory postural adjustments) as standard kinematic variables returned to premorbid values in a timelier manner. These results suggest that individuals may be returning to sports participation prior to complete concussion recovery and could be a mechanism for the high recurrent concussion rate as well as recent speculation associating concussions and other sports-related injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    PubMed  Google Scholar 

  2. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med. 2004;14(1):13–7.

    PubMed  Google Scholar 

  3. Llewellyn TA, Burdette GT, Joyner AB, Buckley TA. Concussion reporting rates at the conclusion of an intercollegiate athletic career. Clin J Sport Med. 2013;24(1):76–9.

    Google Scholar 

  4. Meehan WP, 3rd, Mannix RC, O’Brien MJ, Collins MW. The prevalence of undiagnosed concussions in athletes. Clin J Sport Med. 2013;23(5):339–342.

    Google Scholar 

  5. Kaut KP, DePompei R, Kerr J, Congeni J. Reports of head injury and symptom knowledge among college athletes: implications for assessment and educational intervention. Clin J Sport Med. 2003;13(4):213–21.

    PubMed  Google Scholar 

  6. Players still willing to hide head injuries. Associated Press; 2011 [cited 5 June 2013]. Available from http://espn.go.com/nfl/story/_/id/7388074/nfl-players-say-hiding-concussions-option.

  7. McCrory P, Meeuwisse WH, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–8.

    PubMed  Google Scholar 

  8. Davis GA, Iverson GL, Guskiewicz KM, Ptito A, Johnston KM. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion. Br J Sports Med. 2009;43(1):36–45.

    Google Scholar 

  9. Kutcher JS, McCrory P, Davis G, Ptito A, Meeuwisse WH, Broglio SP. What evidence exists for new strategies or technologies in the diagnosis of sports concussion and assessment of recovery [Review]? Br J Sports Med. 2013;47(5):299–303.

    PubMed  Google Scholar 

  10. Dashnaw ML, Petraglia AL, Bailes JE. An overview of the basic science of concussion and subconcussion: where we are and where we are going. Neurosurg Focus. 2012;33(6):E5.

    PubMed  Google Scholar 

  11. Henry LC, Tremblay S, Leclerc S, Khiat A, Boulanger Y, Ellemberg D, et al. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol. 2011;11:105.

    PubMed Central  PubMed  Google Scholar 

  12. Unden J, Romner B. Can low serum levels of S100B predict normal CT findings after minor head injury in adults?: an evidence-based review and meta-analysis. J Head Trauma Rehabil. 2010;25(4):228–40.

    PubMed  Google Scholar 

  13. Liu MC, Akinyi L, Scharf D, Mo JX, Larner SF, Muller U, et al. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci. 2010;31(4):722–32.

    PubMed Central  PubMed  Google Scholar 

  14. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas III JJ, Oli MW, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38(1):138–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma. 2013;30(8):657–70.

    PubMed  Google Scholar 

  16. Barr WB. Neuropsychological testing of high school athletes—preliminary norms and test-retest indices. Arch Clin Neuropsychol. 2003;18(1):91–101.

    PubMed  Google Scholar 

  17. Broglio SP, Ferrara MS, Macciocchi SN, Baumgartner TA, Elliott R. Test-retest reliability of computerized concussion assessment programs. J Athl Train. 2007;42(4):509–14.

    PubMed Central  PubMed  Google Scholar 

  18. Randolph C. Baseline neuropsychological testing in managing sport-related concussion: does it modify risk? Curr Sports Med Rep. 2011;10(1):21–6.

    PubMed  Google Scholar 

  19. Schatz P. Long-term test-retest reliability of baseline cognitive assessments using ImPACT. Am J Sports Med. 2010;38(1):47–53.

    PubMed  Google Scholar 

  20. Register-Mihalik JK, Guskiewicz KM, Mihalik JP, Schmidt JD, Kerr ZY, McCrea MA. Reliable change, sensitivity, and specificity of a multidimensional concussion assessment battery: implications for caution in clinical practice. J Head Trauma Rehabil. 2013;28(4):274–83.

    PubMed  Google Scholar 

  21. Iverson GL, Lovell MR, Collins MW. Interpreting change on ImPACT following sport concussion. Clin Neuropsychol. 2003;17(4):460–7.

    PubMed  Google Scholar 

  22. Erdal K. Neuropsychological testing for sports-related concussion: how athletes can sandbag their baseline testing without detection. Arch Clin Neuropsychol. 2012;27(5):473–9.

    PubMed  Google Scholar 

  23. Glatts C, Schatz P. “Sandbagging” baseline concussion testing on ImPACT is more difficult than it appears. Arch Clin Neuropsychol. 2012;27(6):621–9.

    Google Scholar 

  24. Moser RS, Schatz P, Neidzwski K, Ott SD. Group versus individual administration affects baseline neurocognitive test performance. Am J Sports Med. 2011;39(11):2325–30.

    PubMed  Google Scholar 

  25. Resch J, Driscoll A, McCaffrey N, et al. impact test-retest reliability: reliably unreliable? J Athl Train. 2013;48(4):506–11.

    Google Scholar 

  26. Bey T, Ostick B. Second impact syndrome. West J Emerg Med. 2009;10(1):6–10.

    PubMed Central  PubMed  Google Scholar 

  27. Cantu RC. Second-impact syndrome. Clin Sports Med. 1998;17(1):37–44.

    CAS  PubMed  Google Scholar 

  28. Boden BP, Tacchetti RL, Cantu RC, Knowles SB, Mueller FO. Catastrophic head injuries in high school and college football players. Am J Sports Med. 2007;35(7):1075–81.

    PubMed  Google Scholar 

  29. Cantu RC. Recurrent athletic head injury: risks and when to retire. Clin Sports Med. 2003;22(3):593–603.

    PubMed  Google Scholar 

  30. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.

    PubMed Central  PubMed  Google Scholar 

  31. Zemper ED. Two-year prospective study of relative risk of a second cerebral concussion. Am J Phys Med Rehabil. 2003;82(9):653–9.

    PubMed  Google Scholar 

  32. Guskiewicz KM, Weaver NL, Padua DA, Garrett Jr WE. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med. 2000;28(5):643–50.

    CAS  PubMed  Google Scholar 

  33. Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2549–55.

    CAS  PubMed  Google Scholar 

  34. Collins MW, Lovell MR, Iverson GL, Cantu RC, Maroon JC, Field M. Cumulative effects of concussion in high school athletes. Neurosurgery. 2002;51(5):1175–9.

    PubMed  Google Scholar 

  35. Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics. 2013;132:8–17.

    PubMed  Google Scholar 

  36. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57(4):719–26; discussion 719–26.

    Google Scholar 

  37. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding Jr HP, Matthews A, et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007;39(6):903–9.

    PubMed  Google Scholar 

  38. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35.

    PubMed Central  PubMed  Google Scholar 

  39. Schwartz A. Suicide reveals signs of a disease seen in N.F.L. New York Times, 14 Sept 2010.

    Google Scholar 

  40. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2010;69(9):918–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cavanaugh JT, Guskiewicz KM, Stergiou N. A nonlinear dynamic approach for evaluating postural control: new directions for the management of sport-related cerebral concussion. Sports Med. 2005;35(11):935–50.

    PubMed  Google Scholar 

  42. Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214.

    Google Scholar 

  43. Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  44. Scholz JP, Schoener G, Hsu WL, Jeka JJ, Horak F, Martin V. Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res. 2007;180(1):163–79.

    CAS  PubMed  Google Scholar 

  45. Highstein SM, Holstein GR. The anatomical and physiological framework for vestibular prostheses. Anat Rec. 2012;295(11):2000–9.

    Google Scholar 

  46. Guskiewicz KM. Balance assessment in the management of sport-related concussion. Clin Sports Med. 2011;30(1):89–102.

    PubMed  Google Scholar 

  47. Guskiewicz KM, Ross SE, Marshall SW. Postural stability and neuropsychological deficits after concussion in collegiate athletes. J Athl Train. 2001;36(3):263–73.

    PubMed Central  PubMed  Google Scholar 

  48. Guskiewicz KM. Postural stability assessment following concussion: one piece of the puzzle. Clin J Sport Med. 2001;11(3):182–9.

    CAS  PubMed  Google Scholar 

  49. Ellemberg D, Henry LC, Macciocchi SN, Guskiewicz KM, Broglio SP. Advances in sport concussion assessment: from behavioral to brain imaging measures [Review]. J Neurotrauma. 2009;26(12):2365–82.

    PubMed  Google Scholar 

  50. Chandrasekhar SS. The assessment of balance and dizziness in the TBI patient. Neurorehabilitation. 2013;32(3):445–54.

    PubMed  Google Scholar 

  51. Lei-Rivera L, Sutera J, Galatioto JA, Hujsak BD, Gurley JM. Special tools for the assessment of balance and dizziness in individuals with mild traumatic brain injury. Neurorehabilitation. 2013;32(3):463–72.

    PubMed  Google Scholar 

  52. Mouzon B, Chaytow H, Crynen G, Bachmeier C, Stewart J, Mullan M, et al. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J Neurotrauma. 2012;29(18):2761–73.

    PubMed  Google Scholar 

  53. McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2556–63.

    CAS  PubMed  Google Scholar 

  54. Jansen EC, Larsen RE, Olesen MB. Quantitative romberg test—measurement and computer calculation of postural stability. Acta Neurol Scand. 1982;66(1):93–9.

    CAS  PubMed  Google Scholar 

  55. Thyssen HH, Brynskov J, Jansen EC, Munsterswendsen J. Normal ranges and reproducibility for the quantitative romberg test. Acta Neurol Scand. 1982;66(1):100–4.

    CAS  PubMed  Google Scholar 

  56. Riemann BL, Guskiewicz KM, Shields EW. Relationship between clinical and forceplate measures of postural stability. J Sport Rehabil. 1999;8(2):71–82.

    Google Scholar 

  57. Khasnis A, Gokula RM. Romberg’s test. J Postgrad Med. 2003;49(2):169–72.

    CAS  PubMed  Google Scholar 

  58. Riemann BL, Guskiewicz KM. Assessment of mild head injury using measures of balance and cognition: a case study. J Sport Rehabil. 1997;6(3):283–9.

    Google Scholar 

  59. Gao J, Hu J, Buckley T, White K, Hass C. Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One. 2011;6(9):e24446.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Slobounov S, Cao C, Sebastianelli W, Slobounov E, Newell K. Residual deficits from concussion as revealed by virtual time-to-contact measures of postural stability. Clin Neurophysiol. 2008;119(2):281–9.

    PubMed  Google Scholar 

  61. Slobounov S, Sebastianelli W, Hallett M. Residual brain dysfunction observed one year post-mild traumatic brain injury: combined EEG and balance study. Clin Neurophysiol. 2012;123(9):1755–61.

    PubMed Central  PubMed  Google Scholar 

  62. Slobounov S, Tutwiler R, Sebastianelli W, Slobounov E. Alteration of postural responses to visual field motion in mild traumatic brain injury. Neurosurgery. 2006;59(1):134–9.

    PubMed  Google Scholar 

  63. Cavanaugh JT, Guskiewicz KM, Giuliani C, Marshall S, Mercer V, Stergiou N. Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br J Sports Med. 2005;39(11):805–11.

    CAS  PubMed  Google Scholar 

  64. Mrazik M, Ferrara MS, Peterson CL, Elliott RE, Courson RW, Clanton MD, et al. Injury severity and neuropsychological and balance outcomes of four college athletes. Brain Inj. 2000;14(10):921–31.

    CAS  PubMed  Google Scholar 

  65. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train. 2000;35(1):19–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Peterson CL, Ferrara MS, Mrazik M, Piland T, Elliott T. Evaluation of neuropsychological stability following cerebral domain scores and postural concussion in sports. Clin J Sport Med. 2003;13(4):230–7.

    PubMed  Google Scholar 

  67. Cavanaugh JT, Guskiewicz KM, Stergiou N, editors. Detecting altered postural control after cerebral concussion in athletes without postural instability. Philadelphia, PA: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  68. Register-Mihalik JK, Mihalik JP, Guskiewicz KM. Balance deficits after sports-related concussion in individuals reporting posttraumatic headache. Neurosurgery. 2008;63(1):76–80; discussion 80–2.

    Google Scholar 

  69. Kelly KA, Jordan EM, Burdette GT, Buckley TA. NCAA Division I athletic trainers concussion management practice patterns. J Athl Train. 2013 [epub ahead of print].

    Google Scholar 

  70. Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment battery. Neurosurgery. 2007;60(6):1050–7.

    PubMed  Google Scholar 

  71. Iverson GL, Koehle MS. Normative data for the modified balance error scoring system in adults. Brain Inj. 2013;27(5):596–9.

    PubMed  Google Scholar 

  72. Schneiders AG, Sullivan SJ, Handcock P, Gray A, McCrory PR. Sports concussion assessment: the effect of exercise on dynamic and static balance. Scand J Med Sci Sports. 2012;22(1):85–90.

    CAS  PubMed  Google Scholar 

  73. Ferrara MS, McCrea M, Peterson CL, Guskiewicz KM. A survey of practice patterns in concussion assessment and management. J Athl Train. 2001;36(2):145–9.

    PubMed Central  PubMed  Google Scholar 

  74. Notebaert AJ, Guskiewicz KM. Current trends in athletic training practice for concussion assessment and management. J Athl Train. 2005;40(4):320–5.

    PubMed Central  PubMed  Google Scholar 

  75. Covassin T, Elbin R, Stiller-Ostrowski JL. Current sport-related concussion teaching and clinical practices of sports medicine professionals. J Athl Train. 2009;44(4):400–4.

    PubMed Central  PubMed  Google Scholar 

  76. McCrea M, Barr WB, Guskiewicz K, Randolph C, Marshall SW, Cantu R, et al. Standard regression-based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.

    PubMed  Google Scholar 

  77. Mulligan IJ, Boland MA, McIlhenny CV. The balance error scoring system learned response among young adults. Sports Health. 2013;5(1):22–6.

    PubMed Central  PubMed  Google Scholar 

  78. Finnoff JT, Peterson VJ, Hollman JH, Smith J. Intrarater and interrater reliability of the balance error scoring system (BESS). PM R. 2009;1(1):50–4.

    PubMed  Google Scholar 

  79. Pagnacco G, Carrick FR, Pascolo PB, Rossi R, Oggero E. Learning effect of standing on foam during posturographic testing preliminary findings. Biomed Sci Instrum. 2012;48:332–9.

    PubMed  Google Scholar 

  80. Hunt TN, Ferrara MS, Bornstein RA, Baumgartner TA. The reliability of the modified balance error scoring system. Clin J Sport Med. 2009;19(6):471–5.

    PubMed  Google Scholar 

  81. McLeod TCV, Perrin DH, Guskiewicz KM, Shultz SJ, Diamond R, Gansneder BM. Serial administration of clinical concussion assessments and learning effects in healthy young athletes. Clin J Sport Med. 2004;14(5):287–95.

    Google Scholar 

  82. Valovich TC, Perrin DH, Gansneder BM. Repeat administration elicits a practice effect with the balance error scoring system but not with the standardized assessment of concussion in high school athletes. J Athl Train. 2003;38(1):51–6.

    PubMed Central  PubMed  Google Scholar 

  83. Burk JM, Munkasy BA, Joyner AB, Buckley TA. Balance error scoring system performance changes after a competitive athletic season. Clin J Sport Med. 2013;23(4):312–7.

    PubMed  Google Scholar 

  84. Broglio SP, Zhu W, Sopiarz K, Park Y. Generalizability theory analysis of balance error scoring system reliability in healthy young adults. J Athl Train. 2009;44(5):497–502.

    PubMed Central  PubMed  Google Scholar 

  85. Susco TM, McLeod TCV, Gansneder BM, Shultz SJ. Balance recovers within 20 minutes after exertion as measured by the balance error scoring system. J Athl Train. 2004;39(3):241–6.

    PubMed Central  PubMed  Google Scholar 

  86. Wilkins JC, McLeod TCV, Perrin DH, Gansneder BM. Performance on the balance error scoring system decreases after fatigue. J Athl Train. 2004;39(2):156–61.

    PubMed Central  PubMed  Google Scholar 

  87. Fox ZG, Mihalik JP, Blackburn JT, Battaglini CL, Guskiewicz KM. Return of postural control to baseline after anaerobic and aerobic exercise protocols. J Athl Train. 2008;43(5):456–63.

    PubMed Central  PubMed  Google Scholar 

  88. Onate JA, Beck BC, Van Lunen BL. On-field testing environment and balance error scoring system performance during preseason screening of healthy collegiate baseball players. J Athl Train. 2007;42(4):446–51.

    PubMed Central  PubMed  Google Scholar 

  89. Weber AF, Mihalik JP, Register-Mihalik JK, Mays S, Prentice WE, Guskiewicz K. Dehydration and performance on clinical concussion measures in collegiate wrestlers. J Athl Train. 2013;48(2):153–60.

    PubMed  Google Scholar 

  90. Docherty CL, McLeod TCV, Shultz SJ. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. Clin J Sport Med. 2006;16(3):203–8.

    PubMed  Google Scholar 

  91. McLeod TCV, Armstrong T, Miller M, Sauers JL. Balance improvements in female high school basketball players after a 6-week neuromuscular-training program. J Sport Rehabil. 2009;18(4):465–81.

    PubMed  Google Scholar 

  92. Erkmen N, Taskin H, Kaplan T, Sanioglu A. The effect of fatiguing exercise on balance performance as measured by the balance error scoring system. Isokinet Exerc Sci. 2009;17(2):121–7.

    Google Scholar 

  93. Broglio SP, Tomporowski PD, Ferrara MS. Balance performance with a cognitive task: a dual-task testing paradigm. Med Sci Sports Exerc. 2005;37(4):689–95.

    PubMed  Google Scholar 

  94. Resch JE, May B, Tomporowski PD, Ferrara MS. Balance performance with a cognitive task: a continuation of the dual-task testing paradigm. J Athl Train. 2011;46(2):170–5.

    PubMed Central  PubMed  Google Scholar 

  95. Teel EF, Register-Mihalik JK, Troy Blackburn J, Guskiewicz KM. Balance and cognitive performance during a dual-task: preliminary implications for use in concussion assessment. J Sci Med Sport. 2013;16(3):190–4.

    PubMed  Google Scholar 

  96. Lee H, Sullivan SJ, Schneiders AG. The use of the dual-task paradigm in detecting gait performance deficits following a sports-related concussion: a systematic review and meta-analysis. J Sci Med Sport. 2013;16(1):2–7.

    PubMed  Google Scholar 

  97. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an MRI study. Neuroimage. 2004;22(1):68–82.

    PubMed  Google Scholar 

  98. Parker TM, Osternig LR, Lee HJ, van Donkelaar P, Chou LS. The effect of divided attention on gait stability following concussion. Clin Biomech. 2005;20(4):389–95.

    Google Scholar 

  99. Parker TM, Osternig LR, van Donkelaar P, Chou L-S. Recovery of cognitive and dynamic motor function following concussion. Br J Sports Med. 2007;41(12):868–73.

    PubMed  Google Scholar 

  100. Catena RD, van Donkelaar P, Chou L-S. The effects of attention capacity on dynamic balance control following concussion. J Neuroeng Rehabil. 2011;8:8.

    PubMed Central  PubMed  Google Scholar 

  101. Catena RD, van Donkelaar P, Chou L-S. Different gait tasks distinguish immediate vs. long-term effects of concussion on balance control. J Neuroeng Rehabil. 2009;6:25.

    PubMed Central  PubMed  Google Scholar 

  102. Catena RD, van Donkelaar P, Chou L-S. Altered balance control following concussion is better detected with an attention test during gait. Gait Posture. 2007;25(3):406–11.

    PubMed  Google Scholar 

  103. Catena RD, van Donkelaar P, Chou L-S. Cognitive task effects on gait stability following concussion. Exp Brain Res. 2007;176(1):23–31.

    PubMed  Google Scholar 

  104. Catena RD, van Donkelaar P, Halterman CI, Chou L-S. Spatial orientation of attention and obstacle avoidance following concussion. Exp Brain Res. 2009;194(1):67–77.

    PubMed  Google Scholar 

  105. Howell D, Osternig L, Van Donkelaar P, Mayr U, Chou L-S. Effects of concussion on attention and executive function in adolescents. Med Sci Sports Exerc. 2013;45(6):1030–7.

    PubMed  Google Scholar 

  106. Okumura MS, Cooper SL, Ferrara MS, Tomporowski PD. Global switch cost as an index for concussion assessment: reliability and stability. Med Sci Sports Exerc. 2013;45(6):1038–42.

    PubMed  Google Scholar 

  107. McCrory PR, Berkovic SF. Video analysis of acute motor and convulsive manifestations in sport-related concussion. Neurology. 2000;54(7):1488–91.

    CAS  PubMed  Google Scholar 

  108. Kelly JP, Rosenberg JH. Diagnosis and management of concussion in sports. Neurology. 1997;48(3):575–80.

    CAS  PubMed  Google Scholar 

  109. Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Gait stability following concussion. Med Sci Sports Exerc. 2006;38(6):1032–40.

    Google Scholar 

  110. Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Balance control during gait in athletes and non-athletes following concussion. Med Eng Phys. 2008;30(8):959–67.

    Google Scholar 

  111. Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Gait stability following concussion. Med Sci Sports Exerc. 2006;38(6):1032–40.

    PubMed  Google Scholar 

  112. Van Donkelaar P, Osternig L, Chou LS. Attentional and biomechanical deficits interact after mild traumatic brain injury. Exerc Sport Sci Rev. 2006;34(2):77–82.

    PubMed  Google Scholar 

  113. Bell R, Hall RCW. Mental status examination. Am Fam Physician. 1977;16(5):145–52.

    CAS  PubMed  Google Scholar 

  114. Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35(3):715–28.

    PubMed  Google Scholar 

  115. Mille ML, Hilliard MJ, Martinez KM, Simuni T, Rogers MW. Acute effects of a lateral postural assist on voluntary step initiation in patients with Parkinson’s disease. Mov Disord. 2007;22(1):20–7.

    PubMed  Google Scholar 

  116. Chang HA, Krebs DE. Dynamic balance control in elders: gait initiation assessment as a screening tool. Arch Phys Med Rehabil. 1999;80(5):490–4.

    CAS  PubMed  Google Scholar 

  117. Hass CJ, Gregor RJ, Waddell DE, Oliver A, Smith DW, Fleming RP, et al. The influence of Tai Chi training on the center of pressure trajectory during gait initiation in older adults. Arch Phys Med Rehabil. 2004;85(10):1593–8.

    PubMed  Google Scholar 

  118. Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech. 2005;20(6):607–16.

    Google Scholar 

  119. Hass CJ, Waddell DE, Wolf SL, Juncos JL, Gregor RJ. Gait initiation in older adults with postural instability. Clin Biomech. 2008;23(6):743–53.

    Google Scholar 

  120. Hass CJ, Waddell DE, Fleming RP, Juncos JL, Gregor RJ. Gait initiation and dynamic balance control in Parkinson’s disease. Arch Phys Med Rehabil. 2005;86(11):2172–6.

    PubMed  Google Scholar 

  121. Brunt D, Vanderlinden DW, Behrman AL. The relation between limb loading and control parameters of gait initiation in persons with stroke. Arch Phys Med Rehabil. 1995;76(7):627–34.

    CAS  PubMed  Google Scholar 

  122. Halliday SE, Winter DA, Frank JS, Patla AE, Prince F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture. 1998;8(1):8–14.

    PubMed  Google Scholar 

  123. Tokuno CD, Sanderson DJ, Inglis JT, Chua R. Postural and movement adaptations by individuals with a unilateral below-knee amputation during gait initiation. Gait Posture. 2003;18(3):158–69.

    PubMed  Google Scholar 

  124. Polcyn AF, Lipsitz LA, Kerrigan DC, Collins JJ. Age-related changes in the initiation of gait: degradation of central mechanisms for momentum generation. Arch Phys Med Rehabil. 1998;79(12):1582–9.

    CAS  PubMed  Google Scholar 

  125. Vallabhajosula S, Buckley TA, Tillman MD, Hass CJ. Age and Parkinson’s disease related kinematic alterations during multi-directional gait initiation. Gait Posture. 2013;37(2):280–6.

    PubMed  Google Scholar 

  126. Jian Y, Winter DA, Ishac MG, Gilchrist L. Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture. 1993;1(1):9–22.

    Google Scholar 

  127. Brunt D, Short M, Trimble M, Liu SM. Control strategies for initiation of human gait are influenced by accuracy constraints. Neurosci Lett. 2000;285(3):228–30.

    CAS  PubMed  Google Scholar 

  128. Massion J. Movement, posture and equilibrium—interaction and coordination. Prog Neurobiol. 1992;38(1):35–56.

    CAS  PubMed  Google Scholar 

  129. Chang W-H, Tang P-F, Wang Y-H, Lin K-H, Chiu M-J, Chen S-HA. Role of the premotor cortex in leg selection and anticipatory postural adjustments associated with a rapid stepping task in patients with stroke. Gait Posture. 2010;32(4):487–93.

    PubMed  Google Scholar 

  130. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF. Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol. 1996;75(6):2334–43.

    CAS  PubMed  Google Scholar 

  131. Hass CJ, Buckley TA, Pitsikoulis C, Barthelemy EJ. Progressive resistance training improves gait initiation in individuals with Parkinson’s disease. Gait Posture. 2012;35(4):669–73.

    PubMed  Google Scholar 

  132. Vincent WJ. Statistics in kinesiology. 3rd ed. Champaign, IL: Human Kinetics; 2005.

    Google Scholar 

  133. Tate JJ, Milner CE. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Phys Ther. 2010;90(8):1123–34.

    PubMed  Google Scholar 

  134. Prochazka A, Ellaway P. Sensory systems in the control of movement. Compr Physiol. 2012;2(4):2615–27.

    PubMed  Google Scholar 

  135. Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M, et al. From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural Plast. 2012;2012:375148.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Roemmich RT, Nocera JR, Vallabhajosula S, Amano S, Naugle KM, Stegemoller EL, et al. Spatiotemporal variability during gait initiation in Parkinson’s disease. Gait Posture. 2012;36(3):340–3.

    PubMed Central  PubMed  Google Scholar 

  137. Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos. 2009;19(2):026113.

    PubMed  Google Scholar 

  138. Wittwer JE, Andrews PT, Webster KE, Menz HB. Timing variability during gait initiation is increased in people with Alzheimer’s disease compared to controls. Dement Geriatr Cog Disord. 2008;26(3):277–83.

    Google Scholar 

  139. Lindemann U, Klenk J, Becker C, Moe-Nilssen R. Assessment of adaptive walking performance. Med Eng Phys. 2013;35(2):217–20.

    CAS  PubMed  Google Scholar 

  140. Nakamura T, Meguro K, Sasaki H. Relationship between falls and stride length variability in senile dementia of the Alzheimer type. Gerontology. 1996;42(2):108–13.

    CAS  PubMed  Google Scholar 

  141. Hausdorff JM, Zemany L, Peng CK, Goldberger AL. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol. 1999;86(3):1040–7.

    CAS  PubMed  Google Scholar 

  142. Hausdorff JM, Edelberg HK, Mitchell SL, Goldberg AL, Wei JY. Increased gait unsteadiness in community-dwelling elderly fallers. Arch Phys Med Rehabil. 1997;78(3):278–83.

    CAS  PubMed  Google Scholar 

  143. Beauchet O, Annweiler C, Lecordroch Y, Allali G, Dubost V, Herrmann FR, et al. Walking speed-related changes in stride time variability: effects of decreased speed. J Neuroeng Rehabil. 2009;6:32.

    PubMed Central  PubMed  Google Scholar 

  144. Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM. Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J Neuroeng Rehabil. 2005;2:23.

    PubMed Central  PubMed  Google Scholar 

  145. Armieri A, Holmes JD, Spaulding SJ, Jenkins ME, Johnson AM. Dual task performance in a healthy young adult population: results from a symmetric manipulation of task complexity and articulation. Gait Posture. 2009;29(2):346–8.

    PubMed  Google Scholar 

  146. Silsupadol P, Lugade V, Shumway-Cook A, van Donkelaar P, Chou LS, Mayr U, et al. Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait Posture. 2009;29(4):634–9.

    PubMed Central  PubMed  Google Scholar 

  147. Kerr B, Condon SM, McDonald LA. Cognitive spatial processing and the regulation of posture. J Exp Psychol Hum Percept Perform. 1985;11(5):617–22.

    CAS  PubMed  Google Scholar 

  148. Ebersbach G, Dimitrijevic MR, Poewe W. Influence of concurrent tasks on gait—a dual-task approach. Percept Mot Skills. 1995;81(1):107–13.

    CAS  PubMed  Google Scholar 

  149. Shumway-Cook A, Woollacott M. Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol Sci Med Sci. 2000;55(1):10–6.

    Google Scholar 

  150. Plummer-D’Amato P, Altmann LJP, Saracino D, Fox E, Behrman AL, Marsiske M. Interactions between cognitive tasks and gait after stroke: a dual task study. Gait Posture. 2008;27(4):683–8.

    PubMed Central  PubMed  Google Scholar 

  151. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16(1):1–14.

    PubMed  Google Scholar 

  152. Langlois JA, Keyl PM, Guralnik JM, Foley DJ, Marottoli RA, Wallace RB. Characteristics of older pedestrians who have difficulty crossing the street. Am J Public Health. 1997;87(3):393–7.

    CAS  PubMed  Google Scholar 

  153. Hoxie RE, Rubenstein LZ, Hoenig H, Gallagher BR. The older pedestrian. J Am Geriatr Soc. 1994;42(4):444–50.

    CAS  PubMed  Google Scholar 

  154. Wang JJ, Wai YY, Weng YH, Ng KK, Huang YZ, Ying LL, et al. Functional MRI in the assessment of cortical activation during gait-related imaginary tasks. J Neural Transm. 2009;116(9):1087–92.

    PubMed  Google Scholar 

  155. Perry SD, Santos LC, Patla AE. Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Res. 2001;913(1):27–34.

    CAS  PubMed  Google Scholar 

  156. Sparrow WA, Tirosh O. Gait termination: a review of experimental methods and the effects of ageing and gait pathologies. Gait Posture. 2005;22(4):362–71.

    CAS  PubMed  Google Scholar 

  157. Bishop MD, Brunt D, Pathare N, Patel B. The interaction between leading and trailing limbs during stopping in humans. Neurosci Lett. 2002;323(1):1–4.

    CAS  PubMed  Google Scholar 

  158. Bishop MD, Brunt D, Kukulka C, Tillman MD, Pathare N. Braking impulse and muscle activation during unplanned gait termination in human subjects with parkinsonism. Neurosci Lett. 2003;348(2):89–92.

    CAS  PubMed  Google Scholar 

  159. O’Kane FW, McGibbon CA, Krebs DE. Kinetic analysis of planned gait termination in healthy subjects and patients with balance disorders. Gait Posture. 2003;17(2):170–9.

    PubMed  Google Scholar 

  160. Bishop M, Brunt D, Marjama-Lyons J. Do people with Parkinson’s disease change strategy during unplanned gait termination? Neurosci Lett. 2006;397(3):240–4.

    CAS  PubMed  Google Scholar 

  161. Menant JC, Steele JR, Menz HB, Munro BJ, Lord SR. Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Gait Posture. 2009;30(1):65–70.

    PubMed  Google Scholar 

  162. Vrieling AH, van Keeken HG, Schoppen T, Otten E, Halbertsma JPK, Hof AL, et al. Gait termination in lower limb amputees. Gait Posture. 2008;27(1):82–90.

    CAS  PubMed  Google Scholar 

  163. Vrieling AH, van Keeken HG, Schoppen T, Hof AL, Otten B, Halbertsma JPK, et al. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation. Clin Rehabil. 2009;23(7):659–71.

    PubMed  Google Scholar 

  164. Miff SC, Childress DS, Gard SA, Meier MR, Hansen AH. Temporal symmetries during gait initiation and termination in nondisabled ambulators and in people with unilateral transtibial limb loss. J Rehabil Res Dev. 2005;42(2):175–82.

    PubMed  Google Scholar 

  165. Wikstrom EA, Bishop MD, Inamdar AD, Hass CJ. Gait termination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exerc. 2010;42(1):197–205.

    PubMed  Google Scholar 

  166. Tirosh O, Sparrow WA. Age and walking speed effects on muscle recruitment in gait termination. Gait Posture. 2005;21(3):279–88.

    PubMed  Google Scholar 

  167. Oates AR, Frank JS, Patla AE, VanOoteghem K, Horak FB. Control of dynamic stability during gait termination on a slippery surface in Parkinson’s disease. Mov Disord. 2008;23(14):1977–83.

    PubMed Central  PubMed  Google Scholar 

  168. Cameron D, Murphy A, Morris ME, Raghav S, Iansek R. Planned stopping in people with Parkinson. Parkinsonism Relat Disord. 2010;16(3):191–6.

    CAS  PubMed  Google Scholar 

  169. Crenna P, Cuong DM, Breniere Y. Motor programmes for the termination of gait in humans: organisation and velocity-dependent adaptation. J Physiol. 2001;537(3):1059–72.

    CAS  PubMed  Google Scholar 

  170. Hase K, Stein RB. Analysis of rapid stopping during human walking. J Neurophysiol. 1998;80(1):255–61.

    CAS  PubMed  Google Scholar 

  171. Buckley TA, Munkasy BA, Tapia-Lovler TG, Wikstrom EA. Altered gait termination strategies following a concussion. Gait Posture. 2013;38(3):549–51.

    PubMed  Google Scholar 

  172. Sosnoff JJ, Broglio SP, Shin S, Ferrara MS. Previous mild traumatic brain injury and postural-control dynamics. J Athl Train. 2011;46(1):85–91.

    PubMed Central  PubMed  Google Scholar 

  173. Cavanaugh JT, Guskiewicz KM, Giuliani C, Marshall S, Mercer VS, Stergiou N. Recovery of postural control after cerebral concussion: new insights using approximate entropy. J Athl Train. 2006;41(3):305–13.

    PubMed Central  PubMed  Google Scholar 

  174. Mayers L. Return-to-play criteria after athletic concussion—a need for revision. Arch Neurol. 2008;65(9):1158–61.

    PubMed  Google Scholar 

  175. Dupuis F, Johnston KM, Lavoie M, Lepore F, Lassonde M. Concussions in athletes produce brain dysfunction as revealed by event-related potentials. Neuroreport. 2000;11(18):4087–92.

    CAS  PubMed  Google Scholar 

  176. Gosselin N, Theriault M, Leclerc S, Montplaisir J, Lassonde M. Neurophysiological anomalies in symptomatic and asymptomatic concussed athletes. Neurosurgery. 2006;58(6):1151–60.

    PubMed  Google Scholar 

  177. De Beaumont L, Brisson B, Lassonde M, Jolicoeur P. Long-term electrophysiological changes in athletes with a history of multiple concussions. Brain Inj. 2007;21(6):631–44.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Buckley Ed.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buckley, T.A. (2014). Acute and Lingering Impairments in Post-concussion Postural Control. In: Slobounov, S., Sebastianelli, W. (eds) Concussions in Athletics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0295-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0295-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0294-1

  • Online ISBN: 978-1-4939-0295-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics