Skip to main content

Electrochemical Aspects of Chemical Mechanical Polishing

  • Chapter
  • First Online:
Electrodeposition and Surface Finishing

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 57))

  • 2694 Accesses

Abstract

Metal and glass surfaces have been polished to high levels of planarity and tight tolerances for hundreds of years. The telescope of Galileo, for instance, was enabled by accurate glass lens polishing. Chemical Mechanical Polishing, also known as chemical mechanical planarization or CMP, was developed specifically for the semiconductor industry from the same historical principles, beginning in 1983 at IBM [1] with the successful planarization of reflown glass “bulges” on a wafer surface. Although reflown glass was never adopted as a commercial technique, and despite initial reluctance to incorporate the use of small particles into cleanroom technology, the use of CMP has flourished. Today, a typical integrated circuit is polished dozens of times during manufacture; the planarization of each device layer permits new layers to be built upon it, leading to devices with eight or more separate layers of metallization. CMP is thus industrially important as an enabler of new geometries, as well as a manufacturing technique in its own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer K (1999) IBM MicroNews 5:46

    Google Scholar 

  2. ITRS Roadmap: http://www.itrs.net/Links/2012ITRS/Home2012.htm Table FEP14

  3. Tripathi A, Suni I I, Li Y, Doniat F, McAndrew J (2009) J Electrochem Soc 156:H555-H560

    Article  CAS  Google Scholar 

  4. Plummer J D, Deal M D, Griffin P B (2000) Silicon VLSI Technology, Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  5. Lin F, Nolan L, Xu Z, Cadien K (2012) J Electrochem Soc 159:H482-H489

    Article  CAS  Google Scholar 

  6. Lu Z, Lee S-H, Gorantla V R K, Babu S V, Matijevic E (2003) Mater Res 18:2323-2330

    Article  CAS  Google Scholar 

  7. Bielmann M, Mahajan U, Singh R K (1999) Electrochem Sol-Stat Lett 2:401-403

    Article  CAS  Google Scholar 

  8. Luo J, Dornfeld D A (2003) IEEE Trans Semi Manuf 16:469

    Article  Google Scholar 

  9. Nolan L, Cadien K (2103) Wear 307:155

    Google Scholar 

  10. Steigerwald J M, Murarka S P, Gutmann R J (2004) Chemical Mechanical Planarization of Microelectronic Materials. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  11. Bastaninejad M, Ahmadi G (2005) J Electrochem Soc 152:G720

    Article  CAS  Google Scholar 

  12. Greenwood J (1984) In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 393:133-157

    Article  Google Scholar 

  13. Philipossian A, Mitchell E (2003) J App Phys 42:7259-7264

    Article  CAS  Google Scholar 

  14. Coppeta J, Rogers C, Racz L, Philipossian A, Kaufman F (2000) J Electrochem Soc 147(5):1903-1909

    Article  CAS  Google Scholar 

  15. Preston F. W (1927) J Society of Glass Technology XI :214-256

    Google Scholar 

  16. Luo Q, Ramarajan S,.Babu S. V (1998) Thin Solid Films 335:160-167

    Google Scholar 

  17. DeNardis D, Rosales-Yeomans D, Borucki L, Philipossian A (2010) Thin Solid Films 518:3910–3916

    Article  CAS  Google Scholar 

  18. Lee S-Y, Lee S-H, Park J-G (2003) J Electrochem Soc 150:G327-G332

    Article  CAS  Google Scholar 

  19. Mazaheri A, Ahmadi G (2003) J Electrochem Soc 150: G233-G239

    Article  CAS  Google Scholar 

  20. Li J, Lu X, He Y, Luo J (2011) J Electrochem Soc 158: H197-H202

    Article  CAS  Google Scholar 

  21. Rogers C, Coppeta J, Racz L, Philipossian A, Kaufman, F.B, Bramono D (1998) J Electronic Materials 27:1082-1087

    Google Scholar 

  22. Seok J, Sukam C, Kim A, Tichy J, Cale T (2003) Wear 254 :307–320

    Article  CAS  Google Scholar 

  23. Lu Y. S, Li N, Wang J, Zhang T, Duan M, Xing X.L (2011) Adv Mat Res 215:217-222

    Google Scholar 

  24. Wijekoon K, Lin R, Fishkin B, Yang S, Redeker F, Amico G, Nanjangud S ( 1998) Solid State Technology 41(4)

    Google Scholar 

  25. Cook LM (1990) J. Non-Crystalline Solids 120:152-171

    Article  CAS  Google Scholar 

  26. Ziomek-Moroza M, Miller A, Hawk J, Cadien K, Li D.Y (2003) Wear 255:869-874

    Google Scholar 

  27. Lim G, Lee J-H, Son J-W, Lee H-W, Kim J (2006) J Electrochem Soc 153:B169-B172

    Article  CAS  Google Scholar 

  28. Hernandez J, Wrschka P, Oehrlein GS (2001) J Electrochem Soc 148:G389-G397

    Article  CAS  Google Scholar 

  29. Aksu, S (2005) Mater Res Soc Symp Proc 867:W1.6.1 - W1.6.6

    Google Scholar 

  30. Carpio R, Farkas J, Jairath R (1995) Thin Solid Films 266:238-44

    Article  CAS  Google Scholar 

  31. Ein-Eli Y, Abelev E, Rabkin E, Starosvetsky D (2003) J Electrochem Soc 150:C646-C652

    Article  CAS  Google Scholar 

  32. Ein-Eli Y, Abelev E, Starosvetsky D (2004) J Electrochem Soc 151:G236-G240

    Article  CAS  Google Scholar 

  33. Aiken JK, Howard DK, Popplewell AF (1965) Inhibiting Copper Corrosion. British Patent 994,409

    Google Scholar 

  34. Tromans D (1998), J Electrochem Soc 145: L42-L45

    Article  CAS  Google Scholar 

  35. Cadien KC, Nolan L (2012) Handbook of Thin Film Deposition. Seshan, K (Ed.), Elsevier, Amsterdam

    Google Scholar 

  36. Zheng JP, Roy D (2009) Thin Solid Films 517:4587-4592

    Article  CAS  Google Scholar 

  37. Hong Y, Devarapalli VK, Roy D, Babu SV (2007) J Electrochem Soc 154:H444-H453

    Article  CAS  Google Scholar 

  38. Hong Y, Patri UB, Ramakrishnan S, Roy D, Babu SV (2005) J Mat Res 20:3413-3424

    Article  CAS  Google Scholar 

  39. Yang W L, Cheng C, Tsai M, Liu D, Shieh M (2000) IEEE Elect Dev Lett 21: 218–220 doi:10.1109/55.841301

    Article  CAS  Google Scholar 

  40. Forsberg M, Keskitalo N, Olsson J (2002) Microelectronic Engineering 60:149–155. doi:10.1016/S0167-9317(01)00591-3

    Article  CAS  Google Scholar 

  41. Liu D-G, Tsai M S, Yang WL, Cheng C-Y (2001) J Electronic Materials 30:53–58. doi:10.1007/s11664-001-0214-9

    Article  CAS  Google Scholar 

  42. Senna JR, Smith RL (1995). Paper presented at the 8th Int Conf on Solid State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, 25-29 June 1995.

    Google Scholar 

  43. Watanabe J, Yu G, Eryu O, Koshiyama I, Izumi K, Nakashima K, Kodama K (2005) Precision Engineering 29(2):151–156. doi:10.1016/j.precisioneng.2004.06.006

    Article  Google Scholar 

  44. Evans D (2002). The Future of CMP. In: MRS Bulletin. http://www.mrs.org/publications/bulletin

  45. Kim I-K, Cho B-G, Park J-G, Park J-Y, Park H-S (2009) J Electrochem Soc 156:H188 doi:10.1149/1.3058594

    Article  CAS  Google Scholar 

  46. Lee W, Park H, Lee S, Sohn H (2004) Applied Electrochem 34:119–125

    Article  CAS  Google Scholar 

  47. Peethala BC, Babu SV (2011) J Electrochem Soc 158:H271. doi:10.1149/1.3528942

    Article  CAS  Google Scholar 

  48. Lee S-H, Kang Y-J, Park J-G, Lee S-I, Lee W-J Chemical Mechanical Planarization of Ruthenium for Capacitor Bottom Electrode in DRAM Technology. http://www.electrochem.org/dl/ma/203/pdfs/0446.pdf

  49. Mainka G, Beitel G, Schnabel RF, Saenger A, Dehm C (2001) J Electrochem Soc 148:G552. doi:10.1149/1.1396339

    Article  CAS  Google Scholar 

  50. Kim N-H, Ko P-J, Kang S K, Lee W-S (2007) Microelectronic Engineering 84:2702–2706. doi:10.1016/j.mee.2007.05.027

    Article  CAS  Google Scholar 

  51. Kim I-K, Kang Y-J, Kwon T-Y, Cho B-G, Park J-G, Park J-Y, Park H-S (2008) Electrochem and Solid-State Letters 11: H150. doi:10.1149/1.2901544

    Article  CAS  Google Scholar 

  52. Cui H, Park J-H, Park J-G (2012) J Electrochem Soc 159:H335–H341 doi:10.1149/2.103203jes

    Article  CAS  Google Scholar 

  53. Zhang LM, Raghavan S, Weling M (1999) J Vac Sci Technol B 17:2248-55

    Article  CAS  Google Scholar 

  54. Choiu WC, Chen YC, Lee SN, Jeng SM, Jang SM, Liang MS (2004) IEEE 8:127–129

    Google Scholar 

  55. Miller AE, Feller AD, Andryushchenko TN, Cadien KC (2003) ASM Handbook. vol 13A ASM International, p 164–9

    Google Scholar 

  56. Lin JY, Wang YY, Wan CC, Feng HP, Cheng MY (2007) Electrochem Solid-State Lett 10:H23-H6

    Article  CAS  Google Scholar 

  57. Tamilmani S, Huang W, Raghavan S (2006) J Electrochem Soc 153:53-9

    Article  Google Scholar 

  58. Brusic V, Kistler R, Wang SM, Hawkins J, Schmidt C (1998) Elec Soc S 98:119-25

    Google Scholar 

  59. Assiongbon KA, Emery SB, Gorantla VRK, Babu SV, Roy D (2006) Corrosion Science 48:372-88

    Article  CAS  Google Scholar 

  60. Peethala BC, Roy D, Babu SV (2011) Electrochem and Solid-State Lett 14:306-10

    Article  Google Scholar 

  61. Turk MC, Rock SE, Amanapu HP, Teugels LG, Roy D (2013) J Sol Stat Sci and Technol 2:P205-P13

    CAS  Google Scholar 

  62. Assiongbon KA, Emery SB, Pettit CM, Babu SV, Roy D (2004) Mater. Chem. Phys. 86:347

    Article  CAS  Google Scholar 

  63. Kerrec O, Devilliers D, Groult H, Chemla M (1995) Electrochim. Acta 40:719

    Article  CAS  Google Scholar 

  64. Miller AE, Fischer PB, Feller AD, Cadien KC (2001) Chemically induced defects during copper polish. In: Proceedings of the IEEE 2001 International Interconnect Technology Conference, Piscataway, NJ, USA, 4-6 June 2001

    Google Scholar 

  65. Tsai T-H, Yen S-C (2003) Appl Surf Sci 210:190–205. doi:10.1016/S0169-4332(02)01224-2

    Article  CAS  Google Scholar 

  66. Bentz DN, Jackson KA (2002) Mat Res Soc Symp Proc 697:1–6

    Google Scholar 

  67. Xu G, Liang H, Zhao J, Li Y (2004) J Electrochem Soc 151:G688. doi:10.1149/1.1787497

    Article  CAS  Google Scholar 

  68. Vogt MR, Polewska W, Magnussen OM, Behm RJ (1997) J Electrochem Soc 144:L113-L6

    Article  CAS  Google Scholar 

  69. Fyen W, Vos R, Teerlinck I, Lagrange S, Lauerhaas J, Meuris M, Mertens P, Heyns M (2000) The Ninth International Symposium on Semiconductor Manufacturing (P-55):415–418

    Google Scholar 

  70. Xu K, Vos R, Vereecke G, Doumen G, Fyen W, Mertens P W, Kovacs F (2005) J Vac Sci & Technol B: 23:2160. doi:10.1116/1.2052713

    Article  CAS  Google Scholar 

  71. Ein-Eli Y, Starosvetsky D (2007) Electrochimica Acta 52:1825–1838

    Article  CAS  Google Scholar 

  72. Hariharaputhiran M, Zhang J, Ramarajan S, Keleher JJ, Li Y, Babu SV (2000) J Electrochem. Soc 147:3820–3826

    CAS  Google Scholar 

  73. Islam MS, Jung GY, Ha T, Stewart DR, Chen Y, Wang SY, Williams RS (2005) Appl Phys 80:1385-1389

    Article  Google Scholar 

  74. Li J, Zhu Y, Chen TC (2008) Key Engineering Materials 278:375-376

    Google Scholar 

  75. Zhong ZW, Wang ZF, Zirajutheen BMP, Tan YS, Tan YH (2005) CMP of PC, PMMA and SU-8 Polymers. Paper presented at Polytronic 2005. 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics, pp.58-62, 23-26 Oct 2005

    Google Scholar 

  76. Nigam T, Yiang K-Y, Marathe A (2013) Microelectronics to Nanoelectronics; Devices & Manufacturability. In: Kaul, Anupama (Ed.), CRC Press, Boca Raton, USA

    Google Scholar 

  77. Davis J (2013) 450 mm – It’s bigger than you think. In: Solid State Technology. Available via DIALOG. http://www.electroiq.com/articles/sst/2013/06/450mm-_-it_s-bigger-than-you-think.html

  78. Borucki L, Philipossian A, Goldstein M (2009) Solid State Technology, pp 10-13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Cadien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cadien, K., Nolan, L., Pirayesh, H., Dawkins, K., Xu, Z. (2014). Electrochemical Aspects of Chemical Mechanical Polishing. In: Djokić, S. (eds) Electrodeposition and Surface Finishing. Modern Aspects of Electrochemistry, vol 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0289-7_6

Download citation

Publish with us

Policies and ethics