Skip to main content

Electrochemical Synthesis of Metal Oxides for Energy Applications

  • Chapter
  • First Online:
Electrodeposition and Surface Finishing

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 57))

Abstract

The development of a sustainable global energy policy requires the availability of efficient, reliable and inexpensive energy conversion and storage technologies using renewable, carbon free energy sources. The ability to synthesize functional materials that are both cost effective and highly efficient is a critical step towards this goal. In particular, the electrodeposition of metal oxides is an attractive option for the production of materials for energy applications due to its low cost, high scalability, and versatility. This chapter reviews the fundamentals of the electrochemical formation and growth of oxide materials and describes possible methods to control their composition, morphology, and crystal structure towards performance optimization. Examples of metal oxides systems and specifically how the synthesis process influences their performance will be discussed. The materials examined include ZnO for solar cells, Cu2O for photovoltaic and photoelectrochemical systems, α-Fe2O3 for photoelectrochemical water splitting, and MnO2 for supercapacitor energy storage. Techniques to enhance device performance common to these materials system include varying electrochemical deposition parameters to fine tune morphology, nanostructuring to better control and enhance relevant device properties, and the integration of materials with complementary functions to systematically maximize efficiency through a system approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heber J (2009) Nature 459:28

    CAS  Google Scholar 

  2. Liu A, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M (2004) Nature 427:615

    CAS  Google Scholar 

  3. Szot K, Speier W, Bihlmayer G, Waser R (2006) Nature Mater 5:312

    CAS  Google Scholar 

  4. Koza JA, He Z, Miller AS, Switzer JA (2011) Chem Mater 23:4105

    CAS  Google Scholar 

  5. Bae HS, Yoon MH, Kim JH, Im S (2003) Appl Phys Lett 83:5313

    CAS  Google Scholar 

  6. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488

    CAS  Google Scholar 

  7. Hussain ST, Siddiqa A, Siddiq M, Ali S (2011) J Nanoparticle Res 13:6517

    CAS  Google Scholar 

  8. Matsumoto Y (2001) Science 291:854

    CAS  Google Scholar 

  9. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Chem Rev 108:2064

    CAS  Google Scholar 

  10. Bessekhouad Y, Robert D, Weber JV (2005) Catal Today 101:315

    CAS  Google Scholar 

  11. Castillo NC, Ding L, Heel A, Graule T, Pulgarin C (2010) J Photochem Photobio A: Chem 216:221

    CAS  Google Scholar 

  12. Rühle S, Anderson AY, Barad H, Kupfer B, Bouhadana Y, Rosh-Hodesh E, Zaban A (2012) J Phys Chem Lett 3:3755

    Google Scholar 

  13. O’Regan B, Grätzel M (1991) Nature 353:737

    Google Scholar 

  14. Baxter JB, Aydil ES (2005) Appl Phys Lett 86:053114

    Google Scholar 

  15. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nature Nano 4:455

    CAS  Google Scholar 

  16. Golden TD, Shumsky MG, Zhou Y, VanderWerf RA, Van Leeuwen RA, Switzer JA (1996) Chem Mater 8:2499

    CAS  Google Scholar 

  17. Wijesundera R, Hidaka M, Koga K, Sakai M, Siripala WP (2006) Thin Solid Films 500:241

    CAS  Google Scholar 

  18. McShane CM, Choi K-S (2009) J Amer Chem Soc 131:2561

    CAS  Google Scholar 

  19. Le Formal F, Tétreault N, Cornuz M, Moehl T, Grätzel M, Sivula K (2011) Chem Sci 2:737

    Google Scholar 

  20. Sivula K, Zboril R, Le Formal F, Weidenkaff A, Tucek J, Frydrych J, Grätzel M (2010) J Amer Chem Soc 132:7436

    CAS  Google Scholar 

  21. Dall’Antonia LH, De Tacconi NR, Chanmanee W, Timmaji H, Myung N, Rajeshwar, K (2010) Electrochem Solid-State Lett 13:D29

    Google Scholar 

  22. Jia Q, Iwashina K, Kudo A (2012) Proc Natl Acad Sci US Amer 109:11564

    CAS  Google Scholar 

  23. Yu J, Kudo A (2006) Adv Funct Mater 16:2163

    CAS  Google Scholar 

  24. Thackeray MM (1997) Prog Sol State Chem 25:1

    CAS  Google Scholar 

  25. Sato Y (1991) J Electrochem Soc 138:L37

    CAS  Google Scholar 

  26. Xu C, Kang F, Li B, Du H (2011) J Mater Res 25:1421

    Google Scholar 

  27. Zhang J, Liu X, Wang L, et al. (2011) Nanotechnology 22:185501

    Google Scholar 

  28. Mittiga A, Biccari F, Malerba C (2009) Thin Solid Films 517:2469

    CAS  Google Scholar 

  29. Cowan AJ, Barnett CJ, Pendlebury SR, Barroso M, Sivula K, Grätzel M, Durrant JR, Klug DR (2011) J Amer Chem Soc 133:10134

    CAS  Google Scholar 

  30. Carcia PF, McLean RS, Reilly MH, Nunes G (2003) Appl Phys Lett 82:1117

    CAS  Google Scholar 

  31. Khan SUM, Akikusa J (1999) J Phys Chem B 103:7184

    CAS  Google Scholar 

  32. Matsumoto Y (2011) MRS Bull 25:47

    Google Scholar 

  33. V. Manzano C, Caballero-Calero O, Hormeño S, Penedo M, Luna M, Martín-González MS (2013) J Phys Chem C 117:1502

    Google Scholar 

  34. Siegfried MJ, Choi K-S (2004) Adv Mater 16:1743

    CAS  Google Scholar 

  35. Pauporté T, Lincot D (2000) Electrochim Acta 45:3345

    Google Scholar 

  36. Pourbaix M (1974) Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, Texas, USA p. 324–325, 408–409, 495.

    Google Scholar 

  37. Goux A, Pauporté T, Chivot J, Lincot D (2005) Electrochim Acta 50:2239

    CAS  Google Scholar 

  38. Pauporté T, Goux A, Kahn-Harari A, de Tacconi N, Chenthamarakshan CR, Rajeshwar K, Lincot D (2003) J Phys Chem Solids 64:1737

    Google Scholar 

  39. Tench D, Warren LF (1983) J Electrochem Soc 130:869

    CAS  Google Scholar 

  40. Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Langmuir 21:5907

    CAS  Google Scholar 

  41. Zhou Y, Switzer JA (1998) Script Mater 38:1731

    CAS  Google Scholar 

  42. Therese GHA, Kamath PV (2000) Chem Mater 12:1195

    CAS  Google Scholar 

  43. Zhitomirsky I (2002) Adv Colloid Interface Sci 97:279

    CAS  Google Scholar 

  44. Boccaccini AR, Zhitomirsky I (2002) Curr Opin Solid State Mater Sci 6:251

    CAS  Google Scholar 

  45. Lewis JA (2000) Colloidal Processing of Ceramics. J Am Ceram Soc 83:2341

    CAS  Google Scholar 

  46. Jolivet J, Froidefond C, Pottier A, Chaneac C, Cassaignon S, Tronc E, Euzen P (2004) J Mater Chem 14:3281

    CAS  Google Scholar 

  47. Mann S (2000) Angewandte Chemie (Int ed Eng) 39:3392

    CAS  Google Scholar 

  48. Siegfried MJ, Choi K-S (2005) Angewandte Chemie (Int ed Eng) 44:3218

    CAS  Google Scholar 

  49. Xu L, Guo Y, Liao Q, Zhang J, Xu D (2005) J Phys Chem B 109:13519

    CAS  Google Scholar 

  50. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J App Phys 98:041301

    Google Scholar 

  51. Peulon S, Lincot D (1998) J Electrochem Soc 145:864

    CAS  Google Scholar 

  52. Zhang S, Wei SH, Zunger A (2001) Phys Rev B 63:075205

    Google Scholar 

  53. Park CH, Zhang SB, Wei S-H (2002) Phys Rev B 66:073202

    Google Scholar 

  54. Rousset J, Saucedo E, Lincot D (2009) Chem Mater 21:534

    CAS  Google Scholar 

  55. Marí B, Sahal M, Mollar MA, Cerqueira FM, Samantilleke AP (2012) J Solid State Electrochem 16:2261–2265

    Google Scholar 

  56. Thomas MA, Cui JB (2010) J Phys Chem Lett 1:1090

    CAS  Google Scholar 

  57. Grätzel M (2001) Nature 414:338

    Google Scholar 

  58. Peter LM (2007) J Phys Chem C 111:6601

    CAS  Google Scholar 

  59. Benkstein KD, Kopidakis N, Van de Lagemaat J, Frank AJ (2003) J Phys Chem B 107:7759

    CAS  Google Scholar 

  60. Keis K, Bauer C, Boschloo G, Hagfeldt A, Westermark K, Rensmo H, Siegbahn H (2002) J Photochem Photobio A: Chem 148:57

    CAS  Google Scholar 

  61. Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Solid State Ionics 151:19

    CAS  Google Scholar 

  62. Park WI, Kim JS, Yi GC, Bae MH, Lee HJ (2004) Appl Phys Lett 85:5052

    CAS  Google Scholar 

  63. Albrecht JD, Ruden PP, Limpijumnong S, Lambrecht WRL, Brennan, KF (1999) J App Phys 86:6864

    CAS  Google Scholar 

  64. Hattori M, Noda K, Nishi T, Kobayashi K, Yamada H, Matsushige K (2013) Appl Phys Lett 102:043105

    Google Scholar 

  65. Kroeze JE, Savenije TJ, Warman JM, Tio N (2004) J Amer Chem Soc 126:7608

    CAS  Google Scholar 

  66. Hochbaum AI, Yang P (2010) Chem Rev 110:527

    CAS  Google Scholar 

  67. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Amer Chem Soc 115:6382

    CAS  Google Scholar 

  68. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Japan J App Phys 45:L638

    CAS  Google Scholar 

  69. Chen Z, Tang Y, Zhang L, Luo L (2006) Electrochim Acta 51:5870

    CAS  Google Scholar 

  70. Guérin V-M, Pauporté T (2011) Energy Env Sci 4:2971

    Google Scholar 

  71. Plank NOV, Welland ME, MacManus-Driscoll JL, Schmidt-Mende L (2008) Thin Solid Films 516:7218

    CAS  Google Scholar 

  72. Ling T, Song J-G, Chen XY, Yang J, Qiao SZ, Du XW (2013) J Alloys Compounds 546:307

    CAS  Google Scholar 

  73. Le D, Stolbov S, Rahman TS (2009) Surf Sci 603:1637

    CAS  Google Scholar 

  74. Jayathileke K, Siripala W, Jayanetti J (2010) Sri Lankan J Phys 9:35

    Google Scholar 

  75. McShane CM, Siripala WP, Choi K-S (2010) J Phys Chem Lett 1:2666

    CAS  Google Scholar 

  76. Raebiger H, Lany S, Zunger A (2007) Phys Rev B 76:1

    Google Scholar 

  77. Garuthara R, Siripala WP (2006) J Lumin 121:173

    CAS  Google Scholar 

  78. Wang L, Tao M (2007) Electrochem Solid-State Lett 10:H248

    CAS  Google Scholar 

  79. Paracchino A, Brauer JC, Moser JE, Thimsen E, Grätzel M (2012) J Phys Chem C 116:7341

    CAS  Google Scholar 

  80. Musselman KP, Marin A, Schmidt-Mende L, MacManus-Driscoll JL (2012) Adv Funct Mater 22:2202–2208

    CAS  Google Scholar 

  81. Musselman KP, Wisnet A, Iza DC, Hesse HC, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L (2010) Adv Mater 22:E254

    CAS  Google Scholar 

  82. Han K, Tao M (2009) Sol Energy Mater Sol Cells 93:153

    CAS  Google Scholar 

  83. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A (1998) Chem Comm 2:357

    Google Scholar 

  84. De Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Chem Comm 12:1069

    Google Scholar 

  85. Nian J, Hu C, Teng H (2008) Int J Hydrogen Energy 33:2897

    CAS  Google Scholar 

  86. Lin C-Y, Lai Y-H, Mersch D, Reisner E (2012) Chem Sci 3:3482

    CAS  Google Scholar 

  87. Tsui L, Wu L, Swami N, Zangari G (2012) ECS Electrochem Lett 1:D15

    CAS  Google Scholar 

  88. Zheng Z, Huang B, Wang Z, Guo M, Qin X, Zhang X, Wang P, Dai Y (2009) J Phys Chem C 113:14448

    CAS  Google Scholar 

  89. Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Adv Funct Mater 20:2165

    CAS  Google Scholar 

  90. Hou Y, Li X, Zou X, Quan X, Chen GH (2009) Env Sci Tech 43:858

    CAS  Google Scholar 

  91. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q (2010) Env Sci Tech 44:7641

    CAS  Google Scholar 

  92. Kakuta S, Abe T (2009) Electrochem Solid-State Lett 12:P1

    CAS  Google Scholar 

  93. Wu L, Tsui L, Swami N, Zangari G (2010) J Phys Chem C 114:11551

    CAS  Google Scholar 

  94. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Nature Mater 10:456

    CAS  Google Scholar 

  95. Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Grätzel M (2012) Energy Env Sci 5:8673

    CAS  Google Scholar 

  96. Bora DK, Braun A, Constable EC (2013) Energy Env Sci 6:407

    CAS  Google Scholar 

  97. Glasscock JA, Barnes PRF, Plumb IC, Bendavid A, Martin PJ (2008) Thin Solid Films 516:1716

    CAS  Google Scholar 

  98. Peng H, Lany S (2012) Phys Rev B 85:1

    Google Scholar 

  99. Enache CS, Liang YQ, Van de Krol R (2011) Thin Solid Films 520:1034

    CAS  Google Scholar 

  100. McDonald K, Choi K-S (2010) Chem Mater 23:1686

    Google Scholar 

  101. Mohapatra SK, Banerjee S, Misra M (2008) Nanotechnology 19:315601

    Google Scholar 

  102. Tamboli SH, Rahman G, Joo O (2012) J Alloys Compounds 520:232

    CAS  Google Scholar 

  103. Schrebler R, Llewelyn C, Vera F, Cury P, Muñoz E, del Río R, Gómez M, Humberto C, Ricardo D, Enrique AB, Bello K (2006) Electrochem Solid-State Lett 9:D95

    Google Scholar 

  104. Spray RL, Choi K-S (2009) Chem Mater 21:3701

    CAS  Google Scholar 

  105. Jiao S, Xu L, Hu K, Li J, Gao S, Xu D (2010) J Phys Chem C 114:269

    CAS  Google Scholar 

  106. Leibenguth J-L, Cohen M (1972) J Electrochem Soc 119:987

    CAS  Google Scholar 

  107. Wu MS, Lee RH, Jow JJ, Yang WD, Hsieh CY, Weng BJ (2009) Electrochem Solid-State Lett 12:A1

    CAS  Google Scholar 

  108. Wu M-S, Ou Y-H, Lin Y-P (2010) Electrochim Acta 55:3240

    CAS  Google Scholar 

  109. Murphy A, Barnes P, Randeniya L, Plumb I, Grey I, Horne M, Glasscock J (2006) Int J Hydrogen Energy 31:1999

    CAS  Google Scholar 

  110. Van Daal H, Bosman A (1967) Phys Rev 158:736

    Google Scholar 

  111. Kennedy JH, Frese KW (1978) J Electrochem Soc 125:709

    CAS  Google Scholar 

  112. Peter LM, Wijayantha KGU, Tahir AA (2012) Faraday Discussions 155:309

    CAS  Google Scholar 

  113. Cesar I, Sivula K, Kay A, Zboril R, Gra¨tzel M (2009) J Phys Chem C 113:772

    Google Scholar 

  114. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Nano Lett 11:2119

    CAS  Google Scholar 

  115. Kumar P, Sharma P, Shrivastav R, Dass S, Satsangi VR (2011) Int J Hydrogen Energy 36:2777

    CAS  Google Scholar 

  116. Khan SUM, Zhou ZY (1993) J Electroanal Chem 357:407

    CAS  Google Scholar 

  117. Kleiman-Shwarsctein A, Hu Y-S, Forman AJ, Stucky GD, McFarland EW (2008) J Phys Chem C 112:15900

    CAS  Google Scholar 

  118. Tang H, Yin W, Matin MA, Wang H, Deutsch T, Al-Jassim MM, Turner JA, Yan Y (2012) J App Phys 111:073502

    Google Scholar 

  119. Hu Y, Kleiman-Shwarsctein A, Forman AJ, Hazen D, Park JN, McFarland EW (2008) Chem Mater 20:3803

    CAS  Google Scholar 

  120. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Angewandte Chemie (Int ed Eng) 49:6405

    CAS  Google Scholar 

  121. Kanan MW, Nocera DG (2008) Science 321:1072

    CAS  Google Scholar 

  122. Zhong DK, Sun J, Inumaru H, Gamelin DR (2009) J Amer Chem Soc 131:6086

    CAS  Google Scholar 

  123. Zhong DK, Cornuz M, Sivula K, Grätzel M, Gamelin DR. (2011) Energy Env Sci 4:1759

    CAS  Google Scholar 

  124. Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z (2012) Electrochem Comm 23:41

    CAS  Google Scholar 

  125. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691

    CAS  Google Scholar 

  126. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184

    CAS  Google Scholar 

  127. Kotz R, Carlen M (2000) Electrochim Acta 45:2483

    CAS  Google Scholar 

  128. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) J Electrochem Soc 153:A2171

    Google Scholar 

  129. Wei W, Cui X, Chen W, Ivey DG (2008) J Phys Chem C 112:15075

    CAS  Google Scholar 

  130. Rodrigues S, Munichandraiah N, Shukla AK (1998) J App Electrochem 28:1235

    CAS  Google Scholar 

  131. Rogulski Z, Siwek H, Paleska I, Czerwinski A (2003) J Electroanal Chem 543:175

    CAS  Google Scholar 

  132. Broughton JN, Brett MJ (2005) Electrochim Acta 50:4814

    CAS  Google Scholar 

  133. Devaraj S, Munichandraiah N (2005) Electrochem Solid-State Lett 8:A373

    CAS  Google Scholar 

  134. Prasad KR, Miura N (2004) J Power Sources 135:354

    CAS  Google Scholar 

  135. Chou S, Cheng F, Chen J (2006) J Power Sources 162:727

    CAS  Google Scholar 

  136. Wei J, Nagarajan N, Zhitomirsky I (2007) J Mater Proc Tech 186:356

    CAS  Google Scholar 

  137. Sawangphruk M, Pinitsoontorn S, Limtrakul J (2012) J Solid State Electrochem 16:2623

    CAS  Google Scholar 

  138. Zhao GY, Xu CL, Li HL (2007) J Power Sources 163:1132

    CAS  Google Scholar 

  139. Rajendra PK, Miura N (2004) Electrochem Comm 6:1004

    Google Scholar 

  140. Babakhani B, Ivey DG (2011) Electrochim Acta 56:4753

    CAS  Google Scholar 

  141. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Nano Lett 8:2664

    CAS  Google Scholar 

  142. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2010) J Phys Chem C 114:658

    CAS  Google Scholar 

  143. Li J, Zhitomirsky I (2009) J Mater Proc Tech 209:3452

    CAS  Google Scholar 

  144. Wang Y, Liu H, Sun X, Zhitomirsky I (2009) Script Mater 61:1079

    CAS  Google Scholar 

  145. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Nano Lett 11:2905

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Zangari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsui, Lk., Zangari, G. (2014). Electrochemical Synthesis of Metal Oxides for Energy Applications. In: Djokić, S. (eds) Electrodeposition and Surface Finishing. Modern Aspects of Electrochemistry, vol 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0289-7_4

Download citation

Publish with us

Policies and ethics