Skip to main content

S100A9, Inflammation, and Regulation of Immune Suppression in Cancer

  • Chapter
  • First Online:
Tumor-Induced Immune Suppression

Abstract

Chronic inflammation plays a major role in tumor initiation, promotion of tumor growth, and induction of immune suppression. While inflammation and antigen-specific immune responses can be initiated to target the tumor for eradication, inflammation can also promote cancer development either directly by inducing genetic instability within the cancer cell or indirectly by promoting immune suppression. Such inflammation-induced immune suppression allows tumor cells to avoid immune surveillance. The S100A9 protein is one of the major mediators of inflammation. It belongs to the S100 family of Ca2+-binding proteins and is produced primarily by myeloid cells. It has a pleiotropic effect on myeloid, endothelial, and tumor cells. In this chapter, we will discuss the contribution of myeloid cells as one of the main elements of the progression from inflammation to tumor and the role of S100A9 proteins in the regulation of inflammation and immune responses in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8(13):2005–2013

    Article  CAS  PubMed  Google Scholar 

  2. Kanterman J, Sade-Feldman M, Baniyash M (2012) New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 22(4):307–318. doi:10.1016/j.semcancer.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  3. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  5. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi:10.1016/S0140-6736(00)04046-0

    Article  CAS  PubMed  Google Scholar 

  6. Whiteside TL, Parmiani G (1994) Tumor-infiltrating lymphocytes: their phenotype, functions and clinical use. Cancer Immunol Immunother 39(1):15–21

    Article  CAS  PubMed  Google Scholar 

  7. Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706. doi:10.1146/annurev-immunol-020711-075008

    Article  CAS  PubMed  Google Scholar 

  8. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schetter AJ, Heegaard NH, Harris CC (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31(1):37–49. doi:10.1093/carcin/bgp272

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC Jr. (2004) A genetically defined model for human ovarian cancer. Cancer Res 64(5):1655–1663

    Article  CAS  PubMed  Google Scholar 

  11. Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI (2006) The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20(18):2527–2538. doi:10.1101/gad.1455706

    Article  CAS  PubMed  Google Scholar 

  12. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307. doi:10.1038/nri1806

    Article  CAS  PubMed  Google Scholar 

  13. Mauri C, Ehrenstein MR (2008) The ‘short’ history of regulatory B cells. Trends Immunol 29(1):34–40. doi:10.1016/j.it.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  14. Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167(2):195–205. doi:10.1111/j.1365-2249.2011.04515.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51(6):293–298. doi:10.1007/s00262-002-0280-8

    Article  CAS  PubMed  Google Scholar 

  16. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955. doi:10.1093/carcin/bgs123

    Article  CAS  PubMed  Google Scholar 

  17. Dolcetti L, Marigo I, Mantelli B, Peranzoni E, Zanovello P, Bronte V (2008) Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett 267(2):216–225. doi:10.1016/j.canlet.2008.03.012

    Article  CAS  PubMed  Google Scholar 

  18. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  20. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952. doi:10.1038/nri1498

    Article  CAS  PubMed  Google Scholar 

  21. Watkins SK, Zhu Z, Riboldi E, Shafer-Weaver KA, Stagliano KE, Sklavos MM, Ambs S, Yagita H, Hurwitz AA (2011) FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest 121(4):1361–1372

    Article  PubMed Central  PubMed  Google Scholar 

  22. Thomson AW (2010) Tolerogenic dendritic cells: all present and correct? Am J Transplant 10(2):214–219. doi:10.1111/j.1600-6143.2009.02955.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498. doi:10.1073/pnas.0601807103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. doi:10.1002/eji.201040895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao X, Rong L, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, Syrbe U, Sieper J, Qin Z (2012) TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest 122(11):4094–4104. doi:10.1172/JCI64115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  30. Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25. doi:10.1016/j.it.2010.10.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70(9):3526–3536. doi:10.1158/0008-5472.CAN-09-3278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi:10.1038/nri1668

    Article  CAS  PubMed  Google Scholar 

  33. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8 +T cells. J Clin Invest 116(10):2777–2790. doi:10.1172/JCI28828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891

    CAS  PubMed  Google Scholar 

  35. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4  +CD25 - naive T cells to CD4 +CD25 + regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886. doi:10.1084/jem.20030152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wilczynski JR, Radwan M, Kalinka J (2008) The characterization and role of regulatory T cells in immune reactions. Front Biosci 13:2266–2274

    Article  CAS  PubMed  Google Scholar 

  37. Adema GJ (2009) Dendritic cells from bench to bedside and back. Immunol Lett 122(2):128–130. doi:10.1016/j.imlet.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  38. Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S, Weinschenk T, Ochando JC, Cabrelle A, Mandruzzato S, Bronte V (2012) Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep 2(3):628–639. doi:10.1016/j.celrep.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  39. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. doi:10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  40. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19(6):739–744

    Article  CAS  PubMed  Google Scholar 

  41. Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J (2006) Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol 359(4):961–972. doi:10.1016/j.jmb.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  42. Roth J, Burwinkel F, van den Bos C, Goebeler M, Vollmer E, Sorg C (1993) MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood 82(6):1875–1883

    CAS  PubMed  Google Scholar 

  43. Diercks BP, Hauschildt I, Stab F, Wenck H, Doring O, Peters N (2012) IL-10 promotes secretion of S100A8/A9 from human monocytes trough an inclusion in plasma membranes. Scand J Immunol 77(2):169–170. doi:10.1111/sji.12015

    Article  Google Scholar 

  44. Lood C, Stenstrom M, Tyden H, Gullstrand B, Kallberg E, Leanderson T, Truedsson L, Sturfelt G, Ivars F, Bengtsson AA (2011) Protein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus. Arthritis Res Ther 13(2):R60. doi:10.1186/ar3314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bode G, Luken A, Kerkhoff C, Roth J, Ludwig S, Nacken W (2008) Interaction between S100A8/A9 and annexin A6 is involved in the calcium-induced cell surface exposition of S100A8/A9. J Biol Chem 283(46):31776–31784. doi:10.1074/jbc.M803908200

    Article  CAS  PubMed  Google Scholar 

  46. Lin L (2006) RAGE on the Toll Road? Cell Mol Immunol 3(5):351–358

    CAS  PubMed  Google Scholar 

  47. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M (2008) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83(6):1484–1492. doi:10.1189/jlb.0607397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Srikrishna G, Panneerselvam K, Westphal V, Abraham V, Varki A, Freeze HH (2001) Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. J Immunol 166(7):4678–4688

    CAS  PubMed  Google Scholar 

  49. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PP, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29(10):2035–2043

    Article  CAS  PubMed  Google Scholar 

  50. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049. doi:10.1038/nm1638

    Article  CAS  PubMed  Google Scholar 

  51. Hibino T, Sakaguchi M, Miyamoto S, Yamamoto M, Motoyama A, Hosoi J, Shimokata T, Ito T, Tsuboi R, Huh NH (2012) S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73(1):1–12. doi:10.1158/0008-5472.CAN-11-3843

    Google Scholar 

  52. Kerkhoff C, Sorg C, Tandon NN, Nacken W (2001) Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Biochemistry 40(1):241–248

    Article  CAS  PubMed  Google Scholar 

  53. Robinson MJ, Tessier P, Poulsom R, Hogg N (2002) The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem 277(5):3658–3665. doi:10.1074/jbc.M102950200

    Article  CAS  PubMed  Google Scholar 

  54. Hessian PA, Edgeworth J, Hogg N (1993) MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol 53(2):197–204

    CAS  PubMed  Google Scholar 

  55. Zwadlo G, Bruggen J, Gerhards G, Schlegel R, Sorg C (1988) Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol 72(3):510–515

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Sorenson BS, Khammanivong A, Guenther BD, Ross KF, Herzberg MC (2012) IL-1 receptor regulates S100A8/A9-dependent keratinocyte resistance to bacterial invasion. Mucosal Immunol 5(1):66–75. doi:10.1038/mi.2011.48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Choi JH, Shin NR, Moon HJ, Kwon CH, Kim GH, Song GA, Jeon TY, Kim DH, Park do Y (2012) Identification of S100A8 and S100A9 as negative regulators for lymph node metastasis of gastric adenocarcinoma. Histol Histopathol 27(11):1439–1448

    CAS  PubMed  Google Scholar 

  58. Li MX, Xiao ZQ, Liu YF, Chen YH, Li C, Zhang PF, Li MY, Li F, Peng F, Duan CJ, Yi H, Yao HX, Chen ZC (2009) Quantitative proteomic analysis of differential proteins in the stroma of nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissue. J Cell Biochem 106(4):570–579. doi:10.1002/jcb.22028

    Article  CAS  PubMed  Google Scholar 

  59. Markowitz J, Carson WE 3rd (2013) Review of S100A9 biology and its role in cancer. Biochim Biophys Acta 1835(1):100–109. doi:10.1016/j.bbcan.2012.10.003

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Srikrishna G (2012) S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 4(1):31–40. doi:10.1159/000330095

    Article  CAS  PubMed  Google Scholar 

  61. Fan B, Zhang LH, Jia YN, Zhong XY, Liu YQ, Cheng XJ, Wang XH, Xing XF, Hu Y, Li YA, Du H, Zhao W, Niu ZJ, Lu AP, Li JY, Ji JF (2012) Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer. BMC Cancer 12:316. doi:10.1186/1471-2407-12-316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P (2011) The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC. PLoS One 6(7):e21874. doi:10.1371/journal.pone.0021874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massague J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178. doi:10.1016/j.cell.2012.04.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9(2):133–148. doi:10.1158/1541-7786.MCR-10-0394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Rafii S, Lyden D (2006) S100 chemokines mediate bookmarking of premetastatic niches. Nat Cell Biol 8(12):1321–1323. doi:10.1038/ncb1206-1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jennbacken K, Welen K, Olsson A, Axelsson B, Torngren M, Damber JE, Leanderson T (2012) Inhibition of metastasis in a castration resistant prostate cancer model by the quinoline-3-carboxamide tasquinimod (ABR-215050). Prostate 72(8):913–924. doi:10.1002/pros.21495

    Article  CAS  PubMed  Google Scholar 

  67. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi:10.1084/jem.20080132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, Greten TF, Korangy F (2012) S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology 136(2):176–183. doi:10.1111/j.1365-2567.2012.03566.x

    Article  CAS  PubMed  Google Scholar 

  69. Feng PH, Lee KY, Chang YL, Chan YF, Kuo LW, Lin TY, Chung FT, Kuo CS, Yu CT, Lin SM, Wang CH, Chou CL, Huang CD, Kuo HP (2012) CD14 + S100A9 + Monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med 186(10):1025–1036. doi:10.1164/rccm.201204-0636OC

    Article  CAS  PubMed  Google Scholar 

  70. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. doi:10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  71. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med 13(7):828–835. doi:10.1038/nm1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Doussiere J, Bouzidi F, Vignais PV (2001) A phenylarsine oxide-binding protein of neutrophil cytosol, which belongs to the S100 family, potentiates NADPH oxidase activation. Biochem Biophys Res Commun 285(5):1317–1320. doi:10.1006/bbrc.2001.5324

    Article  CAS  PubMed  Google Scholar 

  73. Doussiere J, Bouzidi F, Vignais PV (2002) The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils. Eur J Biochem 269(13):3246–3255

    Article  CAS  PubMed  Google Scholar 

  74. Kerkhoff C, Vogl T, Nacken W, Sopalla C, Sorg C (1999) Zinc binding reverses the calcium-induced arachidonic acid-binding capacity of the S100A8/A9 protein complex. FEBS Lett 460(1):134–138

    Article  CAS  PubMed  Google Scholar 

  75. Sopalla C, Leukert N, Sorg C, Kerkhoff C (2002) Evidence for the involvement of the unique C-tail of S100A9 in the binding of arachidonic acid to the heterocomplex S100A8/A9. Biol Chem 383(12):1895–1905. doi:10.1515/BC.2002.213

    Article  CAS  PubMed  Google Scholar 

  76. Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J (2005) The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. Faseb J 19(3):467–469. doi:10.1096/fj.04-2377fje

    CAS  PubMed  Google Scholar 

  77. Benedyk M, Sopalla C, Nacken W, Bode G, Melkonyan H, Banfi B, Kerkhoff C (2007) HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities. J Invest Dermatol 127(8):2001–2011. doi:10.1038/sj.jid.5700820

    Article  CAS  PubMed  Google Scholar 

  78. Lagasse E, Weissman IL (1992) Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood 79(8):1907–1915

    CAS  PubMed  Google Scholar 

  79. Kim JH, Oh SH, Kim EJ, Park SJ, Hong SP, Cheon JH, Kim TI, Kim WH (2012) The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun 423(1):60–66. doi:10.1016/j.bbrc.2012.05.081

    Article  CAS  PubMed  Google Scholar 

  80. Shimizu K, Libby P, Rocha VZ, Folco EJ, Shubiki R, Grabie N, Jang S, Lichtman AH, Shimizu A, Hogg N, Simon DI, Mitchell RN, Croce K (2011) Loss of myeloid related protein-8/14 exacerbates cardiac allograft rejection. Circulation 124(25):2920–2932. doi:10.1161/CIRCULATIONAHA.110.009910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA (2003) Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 170(6):3233–3242

    CAS  PubMed  Google Scholar 

  83. Vandal K, Rouleau P, Boivin A, Ryckman C, Talbot M, Tessier PA (2003) Blockade of S100A8 and S100A9 suppresses neutrophil migration in response to lipopolysaccharide. J Immunol 171(5):2602–2609

    CAS  PubMed  Google Scholar 

  84. Raquil MA, Anceriz N, Rouleau P, Tessier PA (2008) Blockade of antimicrobial proteins S100A8 and S100A9 inhibits phagocyte migration to the alveoli in streptococcal pneumonia. J Immunol 180(5):3366–3374

    CAS  PubMed  Google Scholar 

  85. Simard JC, Girard D, Tessier PA (2010) Induction of neutrophil degranulation by S100A9 via a MAPK-dependent mechanism. J Leukoc Biol 87(5):905–914. doi:10.1189/jlb.1009676

    Article  CAS  PubMed  Google Scholar 

  86. Kallberg E, Vogl T, Liberg D, Olsson A, Bjork P, Wikstrom P, Bergh A, Roth J, Ivars F, Leanderson T (2012) S100A9 interaction with TLR4 promotes tumor growth. PLoS One 7(3):e34207. doi:10.1371/journal.pone.0034207

    Article  PubMed Central  PubMed  Google Scholar 

  87. Isaacs JT, Pili R, Qian DZ, Dalrymple SL, Garrison JB, Kyprianou N, Bjork A, Olsson A, Leanderson T (2006) Identification of ABR-215050 as lead second generation quinoline-3-carboxamide anti-angiogenic agent for the treatment of prostate cancer. Prostate 66(16):1768–1778. doi:10.1002/pros.20509

    Article  CAS  PubMed  Google Scholar 

  88. Pili R, Haggman M, Stadler WM, Gingrich JR, Assikis VJ, Bjork A, Nordle O, Forsberg G, Carducci MA, Armstrong AJ (2011) Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol 29(30):4022–4028. doi:10.1200/JCO.2011.35.6295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Gabrilovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Condamine, T., Ramachandran, I., Gabrilovich, D. (2014). S100A9, Inflammation, and Regulation of Immune Suppression in Cancer. In: Gabrilovich, D., Hurwitz, A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8056-4_10

Download citation

Publish with us

Policies and ethics