Skip to main content

Encephalopathies Accompanying Type 1 and Type 2 Diabetes

  • Chapter
  • First Online:
Studies in Diabetes
  • 1681 Accesses

Abstract

Progressive encephalopathies accompany both type 1 and type 2 diabetes. Like other chronic complications, they differ in type 1 and type 2 diabetes as to their clinical pictures and underlying pathogenetic mechanisms. The encephalopathy accompanying type 1 diabetes affects learning abilities, intelligence development, and memory retrieval with adverse effects on school performances. The major underlying culprit appears to be insulin and C-peptide deficiencies with consequences as to the expression of neurotrophic factors and their receptor, neurotransmitters, and development of oxidative and apoptotic stressors. Such abnormalities lead to defects in neuronal connectivity and gray and white matter atrophies. Type 1 diabetic encephalopathy is likely to increase due to the rapidly increasing incidence of type 1 diabetes and its occurrence in increasingly younger patients. Type 2 diabetes is associated with increased incidence of dementia and Alzheimer’s disease. Underlying mechanisms include insulin resistance with hyperinsulinemia and hyperglycemia. Commonly accompanying abnormalities such as hypercholesterolemia, hypertension, and obesity perpetuate and accelerate the occurrence of dementia and Alzheimer’s disease in type 2 diabetes. Insulin resistance and elevated cholesterol levels lead to overexpression of caveolin-1 and amyloidogenic processing of amyloid precursor protein with the formation of cerebral β-amyloid in senile plaques. Amyloid accumulation and impaired insulin signaling promote the formation of tau and neurofibrillary tangles. The predicted increases in the incidence of both type 2 diabetes and dementia show parallel trends. The mechanisms underlying diabetic encephalopathies are complex and not fully understood. However, headway is being made and biologically meaningful preventive and therapeutic measures are emerging and will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biessels GJ, Luchsinger JA (eds) (2009) Diabetes and the brain. Humana, New York

    Google Scholar 

  2. Sima AAF (2010) Encephalopathies: the emerging diabetic complications. Acta Diabetol 47:279–293. doi:10.1007/s00592-010-0218-0

    CAS  PubMed  Google Scholar 

  3. Schoenle EJ, Schoenle D, Molinari L et al (2002) Impaired intellectual development in children with type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia 45:108–114

    CAS  PubMed  Google Scholar 

  4. Shehata G, Eltayeb A (2009) Cognitive function and event-related potentials in children with type 1 diabetes mellitus. J Child Neurol 25:469–474

    PubMed  Google Scholar 

  5. Northam EA, Anderson PJ, Jacobs R et al (2001) Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care 24:1541–1546

    CAS  PubMed  Google Scholar 

  6. Musen G, Lyoo IK, Sparks CR et al (2006) Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55:326–333

    CAS  PubMed  Google Scholar 

  7. Sima AAF, Li Z-G (2005) The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetes. Diabetes 54:1497–1505

    CAS  PubMed  Google Scholar 

  8. Francis GJ, Martinez JA, Lin WQ et al (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type 1 diabetic encephalopathy. Brain 131:3311–3334

    PubMed  Google Scholar 

  9. Ehehalt S, Blumenstock G, Willasch AM et al (2008) Continuous rise in incidence of childhood type 1 diabetes in Germany. Diabet Med 25:755–757

    CAS  PubMed  Google Scholar 

  10. Harjutsalo V, Sjöberg L, Tuomilehto J (2008) Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371:1777–1782

    PubMed  Google Scholar 

  11. Kumar P, Krishna P, Reddy SC et al (2008) Incidence of type 1 diabetes mellitus and associated complications among children and young adults: results from Karnataka Diabetes Registry 1995–2008. J Indian Med Assoc 106:708–711

    PubMed  Google Scholar 

  12. Ott A, Stolk RP, van Harskamp F et al (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 58:1937–1941

    Google Scholar 

  13. Wu JH, Haan MN, Liang J et al (2003) Impact of diabetes on cognitive function among older Latinos: a population-based cohort study. J Clin Epidemiol 56:686–693

    PubMed  Google Scholar 

  14. Peila R, Rodriguez BL, Launer LJ, Honolulu-Asia Aging Study et al (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies. Diabetes 51:1256–1262

    CAS  PubMed  Google Scholar 

  15. Wild S, Roglic G, Green A et al (2004) Global prevalence of diabetes. Diabetes Care 27:1047–1053

    PubMed  Google Scholar 

  16. Ferri CP, Prince M, Brayne C et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    PubMed Central  PubMed  Google Scholar 

  17. Ryan CM (2006) Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr Diabetes 7:289–297

    PubMed  Google Scholar 

  18. Northam EA, Rankins D, Lin A et al (2009) Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care 32:445–450

    PubMed  Google Scholar 

  19. Dahlquist G, Källén B, Swedish Childhood Diabetes Study Group (2007) School performance in children with type 1 diabetes: a population-based register study. Diabetologia 50:957–964

    CAS  PubMed  Google Scholar 

  20. McCarthy AM, Lindgren S, Mengeling MA et al (2002) Effects of diabetes on learning in children. Pediatrics 109:1–10

    Google Scholar 

  21. Ryan C, Vega A, Drash A (1985) Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 75:921–927

    CAS  PubMed  Google Scholar 

  22. Rovet J, Alvarez M (1997) Attentional functioning in children and adolescents with IDDM. Diabetes Care 20:803–810

    CAS  PubMed  Google Scholar 

  23. Brands AMA, Biessels GJ, deHaan EHF et al (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735

    PubMed  Google Scholar 

  24. Fox MA, Chen RS, Holmes CS (2003) Gender differences in memory and learning in children with insulin-dependent diabetes mellitus (IDDM) over a 4-year follow-up interval. J Pediatr Psychol 28:569–578

    PubMed  Google Scholar 

  25. Kramer L, Fasching P, Madl C, Schneider B et al (1998) Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes 47:1909–1914

    CAS  PubMed  Google Scholar 

  26. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842–1852

    Google Scholar 

  27. Ryan CM (2009) Cognition in children and adolescents with type 1 diabetes. In: Biessel GJ, Luchsinger JA (eds) Diabetes and the brain. Humana, New York, pp 251–275

    Google Scholar 

  28. Ho MS, Weller NJ, Ives FJ et al (2008) Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus. J Pediatr 153:385–390

    PubMed  Google Scholar 

  29. Stiles MC, Seaquist ER (2010) Cerebral structural and functional changes in type 1 diabetes. Minerva Med 101:105–114

    CAS  PubMed  Google Scholar 

  30. Hoffman WH, Artlett CM, Zhang W et al (2008) Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis. Brain Res 1238:154–162

    CAS  PubMed  Google Scholar 

  31. Hoffman WH, Andjelkovic AV, Zhang W et al (2010) Insulin and IGF-1 receptors, nitrotyrosin and cerebral neuronal deficits in two young patients with ketoacidosis and fatal brain edema. Brain Res 1343:168–177

    CAS  PubMed  Google Scholar 

  32. Sarac K, Akinci A, Alkan A et al (2005) Brain metabolites on proton magnetic spectroscopy in children with poorly controlled type 1 diabetes mellitus. Neuroradiology 47:562–565

    CAS  PubMed  Google Scholar 

  33. van Duinkerken E, Klein M, Schoonenboom NS et al (2009) Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes 58:2335–2343

    PubMed  Google Scholar 

  34. Wilkins TJ (2001) The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 44:914–922

    Google Scholar 

  35. Dabelea D (2009) The accelerating epidemic of childhood diabetes. Lancet 372:1999–2000

    Google Scholar 

  36. Chan JC, Malik V, Jia W et al (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301:2129–2140

    CAS  PubMed  Google Scholar 

  37. Malone JI, Hanna S, Saporta S et al (2008) Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes 9:531–539

    PubMed  Google Scholar 

  38. Reagan LP, Grillo CA, Piroli GG (2008) The A’s and D’s of stress: metabolic, morphological and behavioral consequences. Eur J Pharmacol 585:64–75

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Biessels GJ, Kamal A, Urban IJ et al (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800:125–135

    CAS  PubMed  Google Scholar 

  40. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549

    CAS  PubMed  Google Scholar 

  41. Sima AAF, Yagihashi S (1986) Central-peripheral distal axonopathy in the spontaneously diabetic BB-rat: ultrastructural and morphometric findings. Diabetes Res Clin Pract 1:289–298

    CAS  Google Scholar 

  42. Kamijo M, Cherian PV, Sima AAF (1993) The preventive effect of aldose reductase inhibition on diabetic optic neuropathy in the BB/W-rat. Diabetologia 36:893–898

    CAS  PubMed  Google Scholar 

  43. Biessels GJ (2007) Diabetic encephalopathy. In: Veves A, Malik RA (eds) Diabetic neuropathy––clinical management. Humana, Totowa, p 18

    Google Scholar 

  44. Sima AAF, Zhang W, Muzik O et al (2009) Sequential abnormalities in type 1 diabetic encephalopathy and the effects of C-peptide. Rev Diabet Stud 6:211–222

    PubMed Central  PubMed  Google Scholar 

  45. Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1(1):3

    PubMed Central  PubMed  Google Scholar 

  46. Balakrishnan S, Mathew J, Paulose CS (2010) Cholinergic and glutamergic receptor functional regulation in long-term, low dose somatotropin and insulin treatment to ageing rats: rejuvenation of brain function. Mol Cell Endocrinol 314:23–30

    CAS  PubMed  Google Scholar 

  47. Kar S, Seto D, Dore S et al (1977) Insulin-like growth factors-I and II differentially regulate endogenous acetylcholine release from the rat hippocampal formation. Proc Natl Acad Sci USA 94:14054–14059

    Google Scholar 

  48. Conner JM, Franks KM, Titterness AK et al (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 35:10883–10889

    Google Scholar 

  49. Kamiya H, Zhang W, Sima AAF (2009) Dynamic changes of neuroskeletal proteins underlie impaired axonal maturation and progressive degeneration in type 1 diabetes. Exp Diabetes Res. doi:10.1155/2009

    PubMed Central  PubMed  Google Scholar 

  50. Heikkilä O, Lundbom N, Timonen M et al (2009) Hyperglycemia is associated with changes in the regional concentration of glucose and myo-inositol within the brain. Diabetologia 52:534–540

    PubMed  Google Scholar 

  51. Sima AAF, Zhang W, Kreipke CW et al (2009) Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabetes Stud 6:37–42

    Google Scholar 

  52. Cifarelli V, Luppi P, Tse HM et al (2008) Human proinsulin C-peptide reduces high glucose induced proliferation and NF-kappa-B activation in vascular smooth muscle cells. Atherosclerosis 301:248–257

    Google Scholar 

  53. Sima AAF, Kamiya H, Li Z-G (2004) Insulin, C-peptide hyperglycemia and central nervous system complications in diabetes. Eur J Pharmacol 490:187–197

    CAS  PubMed  Google Scholar 

  54. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  55. Isaac JT, Asky M, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871

    CAS  PubMed  Google Scholar 

  56. Li Z-G, Zhang W, Sima AAF (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 19:375–385

    PubMed  Google Scholar 

  57. Sima AAF, Zhang W, Muzik O et al (2010) White matter changes precede those of gray matter in type 1 diabetic encephalopathy and are preventable with C-peptide. In: XXth Neurodiab, Stockholm (abstract P.9)

    Google Scholar 

  58. Grunberger G, Qiang X, Li ZG et al (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257

    CAS  PubMed  Google Scholar 

  59. Dobbing J, Sands J (1971) Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of the brain growth-spurt. Biol Neonate 19:363–378

    CAS  PubMed  Google Scholar 

  60. Matsuzawa J, Matsui M, Konishi T et al (2001) Age-related volumetric changes of brain grey and white matter in healthy infants and children. Cereb Cortex 11:335–342

    CAS  PubMed  Google Scholar 

  61. Brussee V, Cunningham FA, Zochodne DW (2004) Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 53:1824–1830

    CAS  PubMed  Google Scholar 

  62. Sima AAF, Wahren J (eds) (2009) The relevance of C-peptide in diabetes and its complications. Rev Diab Stud 6(special issue):131–224

    Google Scholar 

  63. Miles WR, Root HF (1922) Psychologic tests applied in diabetic patients. Arch Intern Med 30:767–777

    Google Scholar 

  64. Erkinjuntti T, Ganthier S (2009) The concept of vascular cognitive impairment. Front Neurol Neurosci 24:79–85

    PubMed  Google Scholar 

  65. Luchsinger JA, Tang MX, Stern Y et al (2001) Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 154:635–641

    CAS  PubMed  Google Scholar 

  66. Arvanitakis Z, Wilson RS, Bienias JL et al (2004) Diabetes mellitus and risk of Alzheimer’s disease and decline in cognitive function. Arch Neurol 61:661–666

    PubMed  Google Scholar 

  67. Peila R, Rodriguez BL, White LR et al (2004) Fasting insulin and incident dementia in an elderly population of Japanese–American men. Neurology 63:228–233

    CAS  PubMed  Google Scholar 

  68. Akomolafe A, Beiser A, Meigs JB et al (2006) Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham study. Arch Neurol 63:1551–1555

    PubMed  Google Scholar 

  69. Xu WL, von Strauss E, Qiu CX et al (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039

    CAS  PubMed  Google Scholar 

  70. Xu WL, Qui CX, Wahlin A et al (2004) Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6 year follow-up. Neurology 63:1181–1186

    CAS  PubMed  Google Scholar 

  71. Kivipelto M, Ngandu T, Fratiglioni L et al (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62:1556–1560

    PubMed  Google Scholar 

  72. Whitmer RA, Gustafson DR, Barrett-Connor E et al (2008) Central obesity and increased risk of dementia more than 3 decades later. Neurology 71(14):1057–1064

    CAS  PubMed  Google Scholar 

  73. Spence JD (1996) Cerebral consequences of hypertension: where do they lead? J Hypertens Suppl 14:S139–S145

    CAS  PubMed  Google Scholar 

  74. Etgen T, Sauder D, Bichel H et al (2010) Cognitive decline: the relevance of diabetes, hyperlipidaemia and hypertension. Br J Diabetes Vasc Dis 10:115. doi:10.1177/1474651410368408

    Google Scholar 

  75. Forette F, Seux ML, Staessen JA et al (2002) The prevention of dementia with anti-hypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) Study. Arch Intern Med 162:2046–2052

    PubMed  Google Scholar 

  76. Li N-C, Lee A, Whitmer RA et al (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: a prospective cohort analysis. BMJ 340:b5465. doi:10.1136/baijb5465

    PubMed Central  PubMed  Google Scholar 

  77. Tezapsidis N, Johnston JM, Smith MA et al (2009) Leptin: a novel therapeutic strategy for Alzheimer’s disease. J Alzheimers Dis 16:731–740

    PubMed Central  PubMed  Google Scholar 

  78. Nourhashémi F, Deschamps V, Larrieu S et al, Personnes Agées Quid (2003) Body mass index and incidence of dementia: the PAQUID study. Neurology 60:117–119

    Google Scholar 

  79. Henderson VW, Guthrie JR, Dennerstein L (2003) Serum lipids and memory in a population based cohort of middle age women. J Neurol Neurosurg Psychiatry 74:1530–1535

    CAS  PubMed  Google Scholar 

  80. Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26:1245–1260

    PubMed  Google Scholar 

  81. Raz N, Gunning-Dixon F, Head D et al (2004) Aging, sexual dimorphism and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25:377–396

    PubMed  Google Scholar 

  82. Vermeer SE, Koudstaal PJ, Oudkerk M et al (2002) Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 33:21–25

    PubMed  Google Scholar 

  83. de Leeuw FE, de Groot JC, Achten E et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14

    PubMed  Google Scholar 

  84. Gouw AA, van der Flier WM, Fazekas F et al (2008) Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the leukoaraiosis and disability study. Stroke 39:1414–1420

    PubMed  Google Scholar 

  85. Jongen C, van der Grond J, Kappelle LJ et al (2007) Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabet Med 24:166–171

    Google Scholar 

  86. van Harten B, Oosterman JM, Potter van Loon BJ et al (2007) Brain lesions on MRI in elderly patients with type 2 diabetes mellitus. Eur Neurol 57:70–74

    PubMed  Google Scholar 

  87. den Heijer T, Vermeer SE, van Dijk EJ et al (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604–1610

    Google Scholar 

  88. Korf ES, White LR, Scheltens P et al (2006) Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 29:2268–2274

    PubMed  Google Scholar 

  89. Korf ES, van Straaten EC, de Leeuw FE et al (2007) Diabetes mellitus, hypertension and medial temporal lobe atrophy: the LADIS study. Diabet Med 24:166–171

    CAS  PubMed  Google Scholar 

  90. Manschot SM, Brands AM, van der Grond J et al (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113

    CAS  PubMed  Google Scholar 

  91. Akisaki T, Sakurai T, Takata T et al (2006) Cognitive dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes mellitus Japanese elderly diabetes intervention trial (J-EDIT). Diabetes Metab Res Rev 22:376–384

    PubMed  Google Scholar 

  92. de Leeuw FE, de Groot JC, Oudkerk M et al (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772

    PubMed  Google Scholar 

  93. Knopman DS, Mosley TH, Catellier DJ et al (2005) Cardiovascular risk factors and cerebral atrophy in a middle-aged cohort. Neurology 65:876–881

    PubMed  Google Scholar 

  94. Li Z-G, Zhang W, Sima AAF (2005) The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 1037:12–24

    CAS  PubMed  Google Scholar 

  95. de la Monte SM, Wands JR (2008) Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    PubMed Central  PubMed  Google Scholar 

  96. Williams SB, Goldfine AB, Timimi FK et al (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    CAS  PubMed  Google Scholar 

  97. Inoguchi T, Li P, Umeda F et al (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein-kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    CAS  PubMed  Google Scholar 

  98. Tesfomariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87:1643–1648

    Google Scholar 

  99. Hoyer S (2004) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–152

    CAS  PubMed  Google Scholar 

  100. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    CAS  PubMed  Google Scholar 

  101. Li Z-G, Zhang W, Sima AAF (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56:1817–1824

    CAS  PubMed  Google Scholar 

  102. Toth C, Schmidt AM, Tuor UI et al (2006) Diabetes, leukoencephalopathy and RAGE. Neurobiol Dis 23:445–461

    CAS  PubMed  Google Scholar 

  103. Li Z-G, Qiang X, Sima AAF (2001) Grunberger G: C-peptide attenuates protein tyrosine phosphatase activity and enhances glycogen synthesis in L6 myoblasts. Biochem Biophys Res Commun 26:615–619

    Google Scholar 

  104. Pierson CR, Zhang W, Murakawa Y et al (2002) Early gene responses of trophic factors differ in nerve regeneration in type 1 and type 2 diabetic neuropathy. J Neuropathol Exp Neurol 61:857–871

    CAS  PubMed  Google Scholar 

  105. Xu G, Sima AAF (2001) Altered immediate early gene expression is impaired in diabetic nerve: implications in regeneration. J Neuropathol Exp Neurol 60(10):972–983

    CAS  PubMed  Google Scholar 

  106. Yerneni KK, Bai W, Khan BV et al (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864

    CAS  PubMed  Google Scholar 

  107. Luppi P, Cifarelli V, Tse H et al (2008) Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-kappaB pathway. Diabetologia 51:1534–1543

    CAS  PubMed  Google Scholar 

  108. Goetze S, Blaschke F, Stawowy P et al (2001) TNF-alpha inhibits insulin’s anti-apoptotic signaling in vascular smooth muscle cells. Biochem Biophys Res Commun 287:662–670

    CAS  PubMed  Google Scholar 

  109. Hayden MS, Shosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    CAS  PubMed  Google Scholar 

  110. Brunton S (2009) Beyond glycemic control: treating the entire type 2 diabetes disorder. Postgrad Med 121:68–81. doi:10.3810/pgm.2009.09.2054

    PubMed  Google Scholar 

  111. Li Y, Duffy KB, Ottinger MA et al (2010) GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219

    PubMed Central  PubMed  Google Scholar 

  112. de la Monte SM, Tong M, Lester-Coll N et al (2006) Therapeutic reason of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109

    PubMed  Google Scholar 

  113. Abbatecola AM, Paolisso G, Lamponi M et al (2004) Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc 52:1713–1718

    PubMed  Google Scholar 

  114. Dik MG, Jonker C, Comijs HC et al (2007) Contributions of metabolic syndrome components to cognition in older individuals. Diabetes Care 30:2655–2660

    PubMed  Google Scholar 

  115. Farris W, Mansourian S, Chang Y et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167

    CAS  PubMed  Google Scholar 

  116. Lind J, Lindahl E, Perálvarez-Marin A et al (2010) Structural features of proinsulin C-peptide oligomeric and amyloid states. FEBS J 277:3759–3768, Epub: PMID20738396

    CAS  PubMed  Google Scholar 

  117. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305

    CAS  PubMed  Google Scholar 

  118. Chen GJ, Xu J, Lahousse SA et al (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5:209–228

    PubMed  Google Scholar 

  119. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    CAS  PubMed  Google Scholar 

  120. Ehehalt R, Keller P, Haass C et al (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    CAS  PubMed  Google Scholar 

  121. Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–122

    CAS  PubMed  Google Scholar 

  122. Wahrle S, Das P, Nyborg AC et al (2002) Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9:11–23

    CAS  PubMed  Google Scholar 

  123. Cordy JM, Hussain I, Dingwall C et al (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100:11735–11740

    CAS  PubMed  Google Scholar 

  124. Sima AAF, Zhang W (2010) Caveolin 1 plays a central role in amyloidogenesis in type 2 diabetes (abstract). In: XXth Neurodiab. EASD, Stockholm

    Google Scholar 

  125. Selkoe DJ (2001) Alzheimer’s disease genes, proteins and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  126. Papassotiropoulos A, Wollmer MA, Tsolaki M et al (2005) A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease. J Clin Psychiatry 66:940–947

    CAS  PubMed  Google Scholar 

  127. Holtzman DM, Bales KR, Tenkova T et al (2002) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 97:2892–2897

    Google Scholar 

  128. Petanceska SS, Gandy S (1999) The phosphatidylinositol 3-kinase inhibitor wortmannin alters the metabolism of the Alzheimer's amyloid precursor protein. J Neurochem 73:2316–2320

    CAS  PubMed  Google Scholar 

  129. Refolo LM, Malester B, LaFrancois J et al (2000) Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331

    CAS  PubMed  Google Scholar 

  130. Simons M, Keller P, De Strooper B et al (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464

    CAS  PubMed  Google Scholar 

  131. Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64:895–901

    CAS  PubMed  Google Scholar 

  132. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    CAS  PubMed  Google Scholar 

  133. Chen J, Copozza F, Wu A et al (2008) Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol 217:281–289

    CAS  PubMed  Google Scholar 

  134. de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150

    PubMed  Google Scholar 

  135. Sima AAF, Kamiya H (2008) Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curr Drug Targets 9:37–46

    CAS  PubMed  Google Scholar 

  136. Uetsuki T, Takemoto K, Nishimura I et al (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 19:6955–6964

    CAS  PubMed  Google Scholar 

  137. Ma Q-L, Yang F, Rosario ER et al (2009) β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun-N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    CAS  PubMed  Google Scholar 

  138. Sima AAF (2009) Pathobiology of diabetic encephalopathy in animal models. In: Biessels GJ, Luchsinger JA (eds) Diabetes and the brain. Humana, Totowa, pp 409–431

    Google Scholar 

  139. Kim B, Backus C, Oh SS et al (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150:5294–5301

    CAS  PubMed  Google Scholar 

  140. Viola KL, Velaslo PT, Klein WL (2008) Why Alzheimer’s is a disease of memory: the attack on synapses by A-beta oligomers (ADOL’s). J Nutr Health Aging 12:51S–57S

    CAS  PubMed  Google Scholar 

  141. Kummer MP, Heneka MT (2008) PPAR’s in Alzheimer’s disease. PPAR Res 2008:403896. doi:10.1155/2008/403896

    PubMed Central  PubMed  Google Scholar 

  142. Nicolakakis N, Hamel E (2010) The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer’s disease. Front Aging Neurosci 2:21. doi:10.3389/fnagi.2010.00021

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Anonymous Author (2010) Acetyl-L-carnitine monograph. Altern Med Rev 15:76–83

    Google Scholar 

  144. Zanelli SA, Solenski NJ, Rosenthal RE (2005) Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann N Y Acad Sci 1053:153–161

    CAS  PubMed  Google Scholar 

  145. Sima AAF, Calvani M, Mehra M et al (2005) Acetyl-L-carnitine improves pain, vibratory perception and nerve morphology in patients with chronic diabetic peripheral neuropathy: an analysis of two randomized, placebo-controlled trials. Diabetes Care 28:96–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders A. F. Sima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sima, A.A.F. (2014). Encephalopathies Accompanying Type 1 and Type 2 Diabetes. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_8

Download citation

Publish with us

Policies and ethics