Skip to main content

Analysis of Global Genome Methylation Using the Cytosine-Extension Assay

  • Protocol
  • First Online:
Plant Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1456))

Abstract

DNA methylation is a reversible covalent chemical modification of DNA intended to regulate chromatin structure and gene expression in a cell- and tissue-specific manner and in response to the environment. Cytosine methylation is predominantly occurring in plants, and cytosine nucleotides in plants can be methylated at symmetrical (CpG and CpHpG) and nonsymmetrical sites. Although there exists a number of various methods for the detection of cytosine methylation, most of them are either laborious or expensive or both. Here, we describe a quick inexpensive method for the analysis of global genome methylation using a cytosine-extension assay. The assay can be used for the analysis of the total level of CpG, CpHpG, and CpHpH methylation in a given sample of plant DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53(5):766–784

    Article  CAS  PubMed  Google Scholar 

  3. Shibuya K, Fukushima S, Takatsuji H (2009) RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci U S A 106(5):1660–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7(1):e30515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5(3):e9514

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV (2007) DNA damage, homology-directed repair, and DNA methylation. PLoS Genet 3(7):e110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schar P, Fritsch O (2011) DNA repair and the control of DNA methylation. Prog Drug Res 67:51–68

    CAS  PubMed  Google Scholar 

  8. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13(5):421–426

    Article  CAS  PubMed  Google Scholar 

  9. Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109(Suppl):S45–S55

    Article  CAS  PubMed  Google Scholar 

  10. Bender J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23(7):252–256

    Article  CAS  PubMed  Google Scholar 

  11. Lan J, Hua S, He X, Zhang Y (2010) DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin Shanghai 42(4):243–252

    Article  CAS  PubMed  Google Scholar 

  12. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430(6998):471–476

    Article  CAS  PubMed  Google Scholar 

  14. Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5(7):e174

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21(4):1053–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  CAS  PubMed  Google Scholar 

  17. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324(5933):1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107(43):18729–18734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109(32):E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pogribny I, Yi P, James SJ (1999) A sensitive new method for rapid detection of abnormal methylation patterns in global DNA and within CpG islands. Biochem Biophys Res Commun 262(3):624–628

    Article  CAS  PubMed  Google Scholar 

  23. McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22(17):3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujiwara H, Ito M (2002) Nonisotopic cytosine extension assay: a highly sensitive method to evaluate CpG island methylation in the whole genome. Anal Biochem 307(2):386–389

    Article  CAS  PubMed  Google Scholar 

  25. Basnakian AG, James SJ (1996) Quantification of 3′OH DNA breaks by random oligonucleotide-primed synthesis (ROPS) assay. DNA Cell Biol 15(3):255–262

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Bilichak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bilichak, A., Kovalchuk, I. (2017). Analysis of Global Genome Methylation Using the Cytosine-Extension Assay. In: Kovalchuk, I. (eds) Plant Epigenetics. Methods in Molecular Biology, vol 1456. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7708-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7708-3_6

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-4899-7706-9

  • Online ISBN: 978-1-4899-7708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics