Skip to main content

Stream Classification

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining

Abstract

Compared to batch learning from static data, constructing classifiers from data streams implies new requirements for algorithms, such as constraints on memory usage, restricted processing time, and one scan of incoming examples. Additionally, streams classifiers have to adapt to concept drifts. The entry discusses the following stream classification issues: data stream specific requirements, processing schemes, categorization of concept drifts, classifier evaluation criteria and procedures, forgetting mechanisms, change detection methods, main algorithms for supervised learning of single classifiers and ensembles, open problems, areas of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • Aggarwal CC (ed) (2007) Data streams – models and algorithms. Volume 31 of Advances in database systems. Springer, New York

    Google Scholar 

  • Bifet A, Gavaldà R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings of the 7th SIAM international conference on data mining, Minneapolis, pp 443–448

    Google Scholar 

  • Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive online analysis. J Mach Learn Res 11:1601–1604

    Google Scholar 

  • Brzezinski D, Stefanowski J (2014) Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans Neural Netw Learn Syst 25:81–94

    Article  Google Scholar 

  • Deckert M (2013) Incremental rule-based learners for handling concept drift: an overview. Found Comput Decis Sci 38(1):35–65

    MathSciNet  Google Scholar 

  • Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in nonstationary environments: a survey. IEEE Comput Intell Mag 10(4):12–25

    Article  Google Scholar 

  • Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, Boston, pp 71–80

    Google Scholar 

  • Gama J (2010) Knowledge discovery from data streams. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Gama J, ŽliobaitÄ— I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv 46(4):44:1–44:37

    Google Scholar 

  • Gomes JB, Gaber MM, Sousa PAC, Ruiz EM (2014) Mining recurring concepts in a dynamic feature space. IEEE Trans Neural Netw Learn Syst 25(1):95–110

    Article  Google Scholar 

  • Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J Mach Learn Res 8:2755–2790

    MATH  Google Scholar 

  • Kosina P, Gama J (2015) Very fast decision rules for classification in data streams. Data Min Knowl Discov 29(1):168–202

    Article  MathSciNet  Google Scholar 

  • Krempl G, ŽliobaitÄ— I, Brzezinski D, Hüllermeier E, Last M, Lemaire V, Noack T, Shaker A, Sievi S, Spiliopoulou M, Stefanowski J (2014) Open challenges for data stream mining research. SIGKDD Explor 16(1):1–10

    Article  Google Scholar 

  • Kuncheva LI (2004) Classifier ensembles for changing environments. In: Proceedings of 5th international workshop on multiple classifier systems, MCS 04, Cagliari. Volume 3077 of Springer LNCS, pp 1–15

    Google Scholar 

  • Littlestone N, Warmuth MK (1994) The weighted majority algorithm. Inf Comput 108(2):212–261

    Article  MathSciNet  MATH  Google Scholar 

  • Masud M, Gao J, Khan L, Thuraisingham B (2008) A practical approach to classify evolving data streams: training with limited amount of labeled data. In: Proceedings of the 8th IEEE international conference on data mining, Pisa, pp 929–934

    Google Scholar 

  • Oza NC, Russell SJ (2001) Experimental comparisons of online and batch versions of bagging and boosting. In: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, pp 359–364

    Google Scholar 

  • Spiliopoulou M, Krempl G (2013) Tutorial mining multiple threads of streaming data. In: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining, PAKDD 2013, Gold Coast

    Google Scholar 

  • Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, pp 226–235

    Google Scholar 

  • Wang S, Minku L, Yao X (2015) Resampling-based ensemble methods for online class imbalance learning. IEEE Trans Knowl Data Eng 27(5):1356–1368

    Article  Google Scholar 

  • ŽliobaitÄ— I, Bifet A, Pfahringer B, Holmes G (2011) Active learning with evolving streaming data. In: Proceedings of the 2011 European conference on machine learning and knowledge discovery in databases, Athens. Volume 6913 of Springer LNCS. pp 597–612

    Google Scholar 

  • Zliobaite I, Pechenizkiy M, Gama J (2015) An overview of concept drift applications. In: Japkowicz N, Stefanowski J (eds) Big data analysis: new algorithms for a new society. Springer, Cham, pp 91–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Stefanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Stefanowski, J., Brzezinski, D. (2017). Stream Classification. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_908

Download citation

Publish with us

Policies and ethics