Skip to main content

Hemoglobin Mass and Aerobic Performance at Moderate Altitude in Elite Athletes

  • Chapter
  • First Online:
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

Fore more than a decade, the live high–train low (LHTL) approach, developed by Levine and Stray-Gundersen, has been widely used by elite endurance athletes. Originally, it was pointed out, that by living at moderate altitude, athletes should benefit from an increased red cell volume (RCV) and hemoglobin mass (Hbmass), while the training at low altitudes should prevent the disadvantage of reduced training intensity at moderate altitude. VO2max is reduced linearly by about 6–8 % per 1000 m increasing altitude in elite athletes from sea level to 3000 m, with corresponding higher relative training intensities for the same absolute work load. With 2 weeks of acclimatization, this initial deficit can be reduced by about one half. It has been debated during the last years whether sea-level training or exposure to moderate altitude increases RCV and Hbmass in elite endurance athletes. Studies which directly measured Hbmass with the optimized CO-rebreathing technique demonstrated that Hbmass in endurance athletes is not influenced by sea-level training. We documented that Hbmass is not increased after 3 years of training in national team cross-country skiers. When athletes are exposed to moderate altitude, new studies support the argument that it is possible to increase Hbmass temporarily by 5–6 %, provided that athletes spend >400 h at altitudes above 2300–2500 m. However, this effect size is smaller than the reported 10–14 % higher Hbmass values of endurance athletes living permanently at 2600 m. It remains to be investigated whether endurance athletes reach these values with a series of LHTL camps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams WC, Bernauer EM, Dill DB, Momar JB. Effects of equivalent sea-level and altitude training on VO2max and running performance. J Appl Physiol. 1975;39(2):262–6.

    CAS  PubMed  Google Scholar 

  2. Ashenden MJ, Gore CJ, Dobson GP, Hahn AG. “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol Occup Physiol. 1999;80:479–84.

    Article  CAS  PubMed  Google Scholar 

  3. Ashenden MJ, Gore CJ, Martin DT, Dobson GP, Hahn AG. Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol Occup Physiol. 1999;80:472–8.

    Article  CAS  PubMed  Google Scholar 

  4. Åstrand PO, Rodahl K. Textbook of work physiology. New York, NY: McGraw-Hill; 1986.

    Google Scholar 

  5. Bailey DM, Davies B, Romer L, Castell L, Newsholme E, Gandy G. Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol Occup Physiol. 1998;78:360–8.

    Article  CAS  PubMed  Google Scholar 

  6. Billat VL, Lepretre PM, Heubert RP, Koralsztein JP, Gazeau FP. Influence of acute moderate hypoxia on time to exhaustion at vVO2max in unacclimatized runners. Int J Sports Med. 2003;24:9–14.

    Article  CAS  PubMed  Google Scholar 

  7. Boning D, Rojas J, Serrato M, Ulloa C, Coy L, Mora M, Gomez J, Hutler M. Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med. 2001;22:572–8.

    Article  CAS  PubMed  Google Scholar 

  8. Brugniaux JV, Schmitt L, Robach P, Nicolet G, Fouillot JP, Mouterau S, Lasne F, Pialoux V, Saas P, Chorvot MC, Cornolo J, Olson NV, Richalet J-P. Eighteen days of “living high, training low” stimulated erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol. 2006;100:203–11.

    Article  PubMed  Google Scholar 

  9. Burge CM, Skinner SL. Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol. 1995;79:623–31.

    CAS  PubMed  Google Scholar 

  10. Burtscher M, Nachbauer W, Baumgartl P, Philadelphy M. Benefits of training at moderate altitude versus sea level training in amateur runners. Eur J Appl Physiol Occup Physiol. 1996;74:558–63.

    Article  CAS  PubMed  Google Scholar 

  11. Buskirk ER, Kollias J, Akers F, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23(2):259–66.

    CAS  PubMed  Google Scholar 

  12. Chapman RF, Emery M, Stager JM. Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia. Med Sci Sports Exerc. 1999;31(5):658–63.

    Article  CAS  PubMed  Google Scholar 

  13. Convertino VA, Mack GW, Nadel ER. Elevated central venous pressure: a consequence of exercise training-induced hypervolemia? Am J Physiol. 1980;48:657–64.

    CAS  Google Scholar 

  14. Daniels J, Oldridge N. The effect of alternate exposure to altitude and sea level on world-class middle-distance runners. Med Sci Sports Exerc. 1970;2:107–12.

    Article  CAS  Google Scholar 

  15. Dehnert C, Hutler M, Liu Y, Menold E, Netzer C, Schick R, Kubanek B, Lehmann M, Boning D, Steinacker JM. Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. Int J Sports Med. 2002;23:561–6.

    Article  CAS  PubMed  Google Scholar 

  16. Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3090m altitude in high school champion runners. J Appl Physiol. 1971;30(6):854–9.

    CAS  PubMed  Google Scholar 

  17. Eastwood A, Bourdon PC, Withers RT, Gore CJ. Longitudinal changes in haemoglobin mass and VO2max in adolescents. Eur J Appl Physiol. 2009;105:715. doi:10.1007/s00421-00008-00953-x.

    Article  CAS  PubMed  Google Scholar 

  18. Faulkner JA, Daniels JT, Balke B. Effects of training at moderate altitude on physical performance capacity. J Appl Physiol. 1967;23(1):85–9.

    CAS  PubMed  Google Scholar 

  19. Faulkner JA, Kollias J, Favour CB, Buskirk ER, Balke B. Maximum aerobic capacity and running performance at altitude. J Appl Physiol. 1968;24(5):685–91.

    CAS  PubMed  Google Scholar 

  20. Ferretti G, Moia C, Thomet JM, Kayser B. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol. 1997;498:231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedmann B, Bauer T, Menold E, Bartsch P. Exercise with the intensity of the individual anaerobic threshold in acute hypoxia. Med Sci Sports Exerc. 2004;36:1737–42.

    Article  PubMed  Google Scholar 

  22. Friedmann B, Frese F, Menold E, Bartsch P. Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. Eur J Appl Physiol. 2007;101:67–73.

    Article  CAS  PubMed  Google Scholar 

  23. Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bartsch P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med. 2005;39:148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Friedmann B, Jost J, Rating T, Weller E, Werle E, Eckardt KU, Bartsch P, Mairbaurl H. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude. Int J Sports Med. 1999;20:78–85.

    Article  CAS  PubMed  Google Scholar 

  25. Fry RW, Morton AR, Keast D. Overtraining in athletes. An update. Sports Med. 1991;12:32–65.

    Article  CAS  PubMed  Google Scholar 

  26. Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69:793–801.

    CAS  PubMed  Google Scholar 

  27. Gore CJ, Hahn A, Rice A, Bourdon P, Lawrence S, Walsh C, Stanef T, Barnes P, Parisotto R, Martin D, Pyne D, Gore C. Altitude training at 2690m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport. 1998;1:156–70.

    Article  CAS  PubMed  Google Scholar 

  28. Gore CJ, Hahn AG, Burge CM, Telford RD. VO2max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;18:477–82.

    Article  CAS  PubMed  Google Scholar 

  29. Gore CJ, Hahn AG, Scroop GC, Watson DB, Norton KI, Wood RJ, Campbell DP, Emonson DL. Increased arterial desaturation in trained cyclists during maximal exercise at 580m altitude. J Appl Physiol. 1996;80(6):2204–10.

    CAS  PubMed  Google Scholar 

  30. Gore CJ, Hopkins WG. Counterpoint: positive effects of intermittent hypoxia (live high:train low) on exercise performance are not mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99:2055.

    Article  PubMed  Google Scholar 

  31. Gore CJ, Hopkins WG, Burge CM. Errors of measurement for blood volume parameters: a meta-analysis. J Appl Physiol. 2005;99:1745–58.

    Article  PubMed  Google Scholar 

  32. Gore CJ, Little SC, Hahn AG, Scroop GC, Norton KI, Bourdon PC, Woolford SM, Buckley JD, Stanef T, Campbell DP, Watson DB, Emonson DL. Reduced performance of male and female athletes at 580 m altitude. Eur J Appl Physiol Occup Physiol. 1997;75:136–43.

    Article  CAS  PubMed  Google Scholar 

  33. Green HJ, Hughson RL, Thomsen JA, Sharratt MT. Supramaximal exercise after training-induced hypervolemia. J Appl Physiol. 1987;62:1944–53.

    CAS  PubMed  Google Scholar 

  34. Green HJ, Sutton JR, Coates G, Ali M, Jones S. Response of red cell and plasma volume to prolonged training in humans. J Appl Physiol. 1991;70:1810–5.

    CAS  PubMed  Google Scholar 

  35. Hahn AG, Gore CJ, Martin DT, Ashenden MJ, Roberts AD, Logan PA. An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol A Mol Integr Physiol. 2001;128:777–89.

    Article  CAS  PubMed  Google Scholar 

  36. Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med. 2005;26:350–5.

    Article  CAS  PubMed  Google Scholar 

  37. Heinicke K, Prommer N, Cajiagal J, Viola T, Behn C, Schmidt W. Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume and elevated erythropoietin plasma levels in man. Eur J Appl Physiol. 2003;88:535–43.

    Article  CAS  PubMed  Google Scholar 

  38. Hickson RC, Bomze HA, Holloszy JO. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol. 1977;42:372–6.

    CAS  PubMed  Google Scholar 

  39. Hickson RC, Kanakis RC, Davis J. Reduced training duration and effects on aerobic power, endurance, and cardiac growth. J Appl Physiol. 1982;58:225–9.

    Google Scholar 

  40. Hickson RC, Rosenkoetter MA. Reduced training frequency and maintenance of increased aerobic power. Med Sci Sports Exerc. 1981;13:13–6.

    CAS  PubMed  Google Scholar 

  41. Howley ET. Criteria for maximal oxygen uptake. Review. Med Sci Sports Exerc. 1995;27:1292–301.

    Article  CAS  PubMed  Google Scholar 

  42. Ingjer F, Myhre K. Physiological effects of altitude training on elite male cross country skiers. J Sports Sci. 1992;10:37–47.

    Article  CAS  PubMed  Google Scholar 

  43. Jensen K, Nielsen TS, Fiskestrand JO, Lund JO, Christensen NJ, Secher NH. High-altitude training does not increase maximal oxygen uptake or work capacity at sea level in rowers. Scand J Med Sci Sports. 1993;3:256–62.

    Article  Google Scholar 

  44. Katch VL, Sady SS, Freedson P. Biological variability in maximum aerobic power. Med Sci Sports Exerc. 1982;14:21–4.

    Article  CAS  PubMed  Google Scholar 

  45. Koistinen P, Takala T, Martikkala V, Leppaluoto J. Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia. Int J Sports Med. 1995;16:78–81.

    Article  CAS  PubMed  Google Scholar 

  46. Laitinen H, Alopaeus K, Heikkinen R, Hietanen H, Mikkelson L, Tikkanen HO, Rusko H. Acclimatization to living in normobaric hypoxia and training in normoxia at sea level in runners. Med Sci Sports Exerc. 1995;27:S109.

    Article  Google Scholar 

  47. Lawler J, Powers SK, Thompson D. Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol. 1988;64:1486–92.

    CAS  PubMed  Google Scholar 

  48. Levine BD. Intermittent hypoxic training: fact and fancy. High Alt Med Biol. 2002;3:177–93.

    Article  PubMed  Google Scholar 

  49. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83:102–12.

    CAS  PubMed  Google Scholar 

  50. Levine BD, Stray-Gundersen J. Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99:2053–5.

    Article  PubMed  Google Scholar 

  51. Levine BD, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med. 1992;13 Suppl 1:S209–12.

    Article  PubMed  Google Scholar 

  52. Mizuno M, Juel C, Bro-Rasmussen T, Mygind E, Schibye B, Rasmussen B, Saltin B. Limb skeletal muscle adaptation in athletes after training at altitude. J Appl Physiol. 1990;68:496–502.

    CAS  PubMed  Google Scholar 

  53. Mollard P, Woorons X, Letournel M, Cornolo J, Lamberto C, Beaudry M, Richalet J-P. Role of maximal heart rate and arterial O2 saturation on the decrement of VO2max in moderate acute hypoxia in trained and untrained men. Int J Sports Med. 2007;28:186–92.

    Article  CAS  PubMed  Google Scholar 

  54. Neya M, Enoki T, Kumai Y, Sugoh T, Kawahara T. The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J Appl Physiol. 2007;103:828–34.

    Article  CAS  PubMed  Google Scholar 

  55. Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol. 2001;204:3225–34.

    CAS  PubMed  Google Scholar 

  56. Paterson DJ, Pinnington H, Pearce AR, Morton AR. Maximal exercise cardiorespiratory responses of men and women during acute exposure to hypoxia. Aviat Space Environ Med. 1987;58:243–7.

    CAS  PubMed  Google Scholar 

  57. Peltonen JE, Rantamaki J, Niittymaki SP, Sweins K, Viitasalo JT, Rusko HK. Effects of oxygen fraction in inspired air on rowing performance. Med Sci Sports Exerc. 1995;27:573–9.

    Article  CAS  PubMed  Google Scholar 

  58. Peltonen JE, Tikkanen HO, Ritola JJ, Ahotupa M, Rusko HK. Oxygen uptake response during maximal cycling in hyperoxia, normoxia and hypoxia. Aviat Space Environ Med. 2001;72:904–11.

    CAS  PubMed  Google Scholar 

  59. Peltonen JE, Tikkanen HO, Rusko HK. Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol. 2001;85:82–8.

    Article  CAS  PubMed  Google Scholar 

  60. Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth H, Schumacher Y. Hemoglobin mass after 21 days of conventional altitude training at 1816m. J Sci Med Sport. 2009;12:673. doi:10.1016/j.jsams.2008.06.005.

    Article  PubMed  Google Scholar 

  61. Powers SK, Lawler J, Dempsey JA, Dodd S, Landry G. Effects of incomplete pulmonary gas exchange on VO2max. J Appl Physiol. 1989;66:2491–5.

    CAS  PubMed  Google Scholar 

  62. Pugh LGCE. Athletes at altitude. J Physiol. 1967;192:619–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ray CA, Cureton KJ, Ouzts HG. Postural specificity of cardiovascular adaptations to exercise training. J Appl Physiol. 1990;69:2202–8.

    CAS  PubMed  Google Scholar 

  64. Remes K, Vuopio P, Harkonen M. Effect of long-term training and acute physical exercise on red cell 2,3-diphosphoglycerate. Eur J Appl Physiol Occup Physiol. 1979;42:199–207.

    Article  CAS  PubMed  Google Scholar 

  65. Robach P, Schmitt L, Brugniaux JV, Nicolet G, Duvallet A, Fouillot JP, Mouterau S, Lasne F, Pialoux V, Olson NV, Richalet J-P. Living high-training low: effect on erythropoiesis and maximal aerobic performance in Nordic skiers. Eur J Appl Physiol. 2006;97:695–705.

    Article  PubMed  Google Scholar 

  66. Robach P, Schmitt L, Brugniaux JV, Roels B, Millet G, Hellard P, Nicolet G, Duvallet A, Fouillot JP, Mouterau S, Lasne F, Pialoux V, Olson NV, Richalet J-P. Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol. 2006;96:423–33.

    Article  PubMed  Google Scholar 

  67. Rusko H, Tikkanen HO, Pavolainen L, Hämälainen K, Kalliokoski A, Puranen A. Effect of living in hypoxia and training in normoxia on sea level VO2max and red cell mass. Med Sci Sports Exerc. 1999;31:S86.

    Article  Google Scholar 

  68. Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training. J Sports Sci. 2004;22:928–45.

    Article  PubMed  Google Scholar 

  69. Rusko HK, Tikkanen HO, Peltonen JE. Oxygen manipulation as an ergogenic aid. Curr Sports Med Rep. 2003;2:233–8.

    Article  PubMed  Google Scholar 

  70. Saltin B. Aerobic and anaerobic work capacity at 2300m. Med Thorac. 1967;24:205–10.

    CAS  PubMed  Google Scholar 

  71. Saltin B. The physiology of competitive c.c. skiing across a four decade perspective; with a note on training induced adaptations and role of training at medium altitude. In: Müller E, Schmwameder H, Kornexl E, Raschner C, editors. Science and skiing. Aachen: Meyer & Meyer Sport; 1997.

    Google Scholar 

  72. Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn A, Hawley JA. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol. 2004;96:931–7.

    Article  CAS  PubMed  Google Scholar 

  73. Saunders PU, Telford RD, Pyne DB, Hahn A, Gore CJ. Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport. 2009;12:67–72.

    Article  CAS  PubMed  Google Scholar 

  74. Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc. 2000;32:332–48.

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt W, Maassen N, Böning D. Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. Eur J Appl Physiol. 1988;57:490–8.

    Article  CAS  Google Scholar 

  76. Schmidt W, Prommer N. Effects of various training modalities on blood volume. Scand J Med Sci Sports. 2008;18(Suppl1):57–69.

    Article  PubMed  Google Scholar 

  77. Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95:486–95.

    Article  CAS  PubMed  Google Scholar 

  78. Schuler B, Thomsen JJ, Gassmann M, Lundby C. Timing the arrival at 2340m altitude for aerobic performance. Scand J Med Sci Sports. 2007;17:588–94.

    Article  CAS  PubMed  Google Scholar 

  79. Shoemaker JK, Green HJ, Coates G, Ali M, Grant S. Failure of prolonged exercise training to increase red cell mass in humans. Am J Physiol. 1996;270:121–6.

    Google Scholar 

  80. Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sports Exerc. 1982;14:36–40.

    Article  CAS  PubMed  Google Scholar 

  81. Svedenhag J, Piehl-Aulin K, Skog C, Saltin B. Increased left ventricular muscle mass after long-term altitude training in athletes. Acta Physiol Scand. 1997;161:63–70.

    Article  CAS  PubMed  Google Scholar 

  82. Telford RD, Graham D, Sutton JR, Hahn A, Campbell DA. Medium altitude training and sea level performance. Med Sci Sports Exerc. 1996;28:S124.

    Article  Google Scholar 

  83. Terrados N, Mizuno M, Andersen H. Reduction in maximal oxygen uptake at low altitudes; Role of training status and lung function. Clin Physiol. 1985;5(3):75–9.

    Article  PubMed  Google Scholar 

  84. Thomsen JK, Fogh-Andersen N, Bülow K, Devantier A. Blood and plasma volumes determined by carbon monoxide gas, 99mTC-labeled erythrocytes, 125I-albumin and the T 1824 technique. Scand J Clin Lab Invest. 1991;51:185–90.

    Article  CAS  PubMed  Google Scholar 

  85. Wartburton DE, Haykowski MJ, Quinney HA, Blackmore D, Teo KK, Mcgavock J, Humen D. Blood volume expansion and cardiorespiratory function: effects of training modality. Med Sci Sports Exerc. 2004;36:991–1000.

    Article  Google Scholar 

  86. Jon Peter Wehrlin. Dissertation from the Norwegian School of Sport Sciences. 2008. Altitude and Endurance Athletes - Effects of Acute and Chronic Hypoxic Exposure. ISBN Nr. 978-82-502-0413-3.

    Google Scholar 

  87. Wehrlin J, Marti B. Live high-train low associated with increased haemoglobin mass as preparation for the 2003 World Championships in two native European world class runners. Br J Sports Med. 2006;40:e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wehrlin JP. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96:404–12.

    Article  PubMed  Google Scholar 

  89. Wehrlin JP, Zuest P, Hallen J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006;100:1938–45.

    Article  CAS  PubMed  Google Scholar 

  90. Wilber RL. Altitude training and athletic performance. Champaign, IL: Human Kinetics; 2004.

    Google Scholar 

  91. Wilber RL, Stray-Gundersen J, Levine BD. Effects of hypoxic “Dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39:1590–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Peter Wehrlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wehrlin, J.P., Marti, B., Hallén, J. (2016). Hemoglobin Mass and Aerobic Performance at Moderate Altitude in Elite Athletes. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_24

Download citation

Publish with us

Policies and ethics