Skip to main content

Hyperoxia and Functional MRI

  • Chapter
  • First Online:
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

Oxygen plays a fundamental role in functional magnetic resonance imaging (FMRI). Blood oxygenation level-dependent (BOLD) imaging is the foundation stone of all FMRI and is still the essential workhorse of the vast majority of FMRI procedures. Hemoglobin may provide the magnetic properties that allow the technique to work, but it is oxygen that allows the contrast to effectively be switched on or off, and it is oxygen that we are interested in tracking in order to observe the oxygen metabolism changes. In general the changes in venous oxygen saturation are observed in order to infer changes in the correlated mechanisms, which can include changes in cerebral blood flow, metabolism, and the fraction of inspired oxygen. By independently manipulating the fraction of inspired oxygen it is possible to alter the amount of dissolved oxygen in the plasma, the venous saturation, or even the blood flow. The effects that these changes have on the observed MRI signal can be either a help or a hindrance depending on how well the changes induced are understood. The administration of supplemental inspired oxygen is in a unique position to provide a flexible, noninvasive, inexpensive, patient-friendly addition to the MRI toolkit to enable investigations to look beyond statistics and regions of interest, and actually produce calibrated, targeted measurements of blood flow, metabolism or pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkanian M, Borghammer P, Andersen G, Gjedde A, Ostergaard L, and Vafaee M. Hyperoxia- and hypercapnia-induced changes of cerebral blood flow and metabolic rate of oxygen in ischemic brain tissue. J Cereb Blood Flow Metab. 2007;27: BP22-05H.

    Google Scholar 

  2. Becker HF, Polo O, Mcnamara SG, Berthon-Jones M, Sullivan CE. Effect of different levels of hyperoxia on breathing in healthy subjects. J Appl Physiol. 1996;81:1683–90.

    CAS  PubMed  Google Scholar 

  3. Berkowitz BA. Role of dissolved plasma oxygen in hyperoxia-induced contrast. Magn Reson Imaging. 1997;15:123–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bohr C, Hasselbalch K, Krogh A. Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensauerspannung des Blutes auf dessen Sauerstoffbindung übt. Skand Arch Physiol. 1904;16:402–12.

    Article  Google Scholar 

  5. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med. 1995;34:4–10.

    Article  CAS  PubMed  Google Scholar 

  6. Bulte D, Alfonsi J, Bells S, Noseworthy MD. Vasomodulation of BOLD signal in skeletal muscle. J Magn Reson Imaging. 2006;24:886–90.

    Article  PubMed  Google Scholar 

  7. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab. 2007;27:69–75.

    Article  PubMed  Google Scholar 

  8. Bulte DP, Chiarelli PA, Wise R, Jezzard P. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging. 2007;26:894–9.

    Article  PubMed  Google Scholar 

  9. Bulte DP, Drescher K, and Jezzard P. A comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn Reson Med in press.

    Google Scholar 

  10. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage. 2007;37:808–20.

    Article  PubMed  Google Scholar 

  11. Christiansen J, Douglas C, Haldane J. The absorption and dissociation of carbon dioxide by human blood. J Physiol. 1914;48:244–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D’Othée BJ, Rachmuth G, Munasinghe J, Lang EV. The effect of hyperoxygenation on T1 relaxation time in vitro. Acad Radiol. 2003;10:854–60.

    Article  Google Scholar 

  13. Demchenko IT, Oury TD, Crapo JD, Piantadosi CA. Regulation of the brain’s vascular responses to oxygen. Circ Res. 2002;91:1031–7.

    Article  CAS  PubMed  Google Scholar 

  14. Eidelman LA, Sprung CL. Direct measurements and derived calculations using the pulmonary artery catheter. In: Sprung CL, editor. The pulmonary artery catheter: methodology and clinical applications. Closter NJ: Critical Care Research Associates; 1992. p. 101–18.

    Google Scholar 

  15. Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, Lambertsen CJ, Eckenhoff RG. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol. 2003;95:2453–61.

    Article  PubMed  Google Scholar 

  16. Golay X, Silvennoinen MJ, Zhou J, Clingman CS, Kauppinen RA, Pekar JJ, Van Zijl PCM. Measurement of tissue oxygen extraction ratios from venous blood T2: increased precision and validation of principle. Magn Reson Med. 2001;46:282–91.

    Article  CAS  PubMed  Google Scholar 

  17. Gore J, Doyle F, Pennock J. Relaxation rate enhancement observed in vivo by (NMR) imaging. In: Partain CL, James AE, Rollo FD, editors. Nuclear magnetic resonance (NMR) imaging. Philadelphia: WB Saunders; 1983. p. 94–106.

    Google Scholar 

  18. Grubb Jr RL, Raichle ME, Eichling JO, Ter Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974;5:630–9.

    Article  PubMed  Google Scholar 

  19. Guyton AC, Hall JE. Textbook of medical physiology. Philadelphia: WB Saunders; 2000.

    Google Scholar 

  20. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging physical principles and sequence design. New York: John Wiley & Sons, Ltd; 1999.

    Google Scholar 

  21. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state. Magn Reson Med. 2007;57:115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med. 1999;42:849–63.

    Article  CAS  PubMed  Google Scholar 

  23. Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 2004;182:215–27.

    Article  CAS  PubMed  Google Scholar 

  24. Jezzard P, Matthews PM, Smith SM. Functional MRI: an introduction to methods. Oxford: Oxford University Press; 2003.

    Book  Google Scholar 

  25. Johnston AJ, Steiner LA, Balestreri M, Gupta AK, Menon DK. Hyperoxia and the cerebral hemodynamic responses to moderate hyperventilation. Acta Anaesthesiol Scand. 2003;47:391–6.

    Article  CAS  PubMed  Google Scholar 

  26. Johnston AJ, Steiner LA, Gupta AK, Menon DK. Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br J Anaesth. 2003;90:774–86.

    Article  CAS  PubMed  Google Scholar 

  27. Kennan RP, Scanley BE, Gore JC. Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: separation of blood volume and magnetic susceptibility effects. Magn Reson Med. 1997;37:953–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kolbitsch C, Lorenz IH, Hörmann C, Hinteregger M, Löckinger A, Moser PL, Kremser C, Schocke M, Felber S, Pfeiffer KP, Benzer A. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magn Reson Imaging. 2002;20:535–41.

    Article  PubMed  Google Scholar 

  29. Lambertsen CJ, Kough RH, Cooper DY, Emmel GL, Loeschcke HH, Schmidt CF. Oxygen toxicity: effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J Appl Physiol. 1953;5:471–86.

    CAS  PubMed  Google Scholar 

  30. Losert C, Peller M, Schneider P, Reiser M. Oxygen-enhanced MRI of the brain. Magn Reson Med. 2002;48:271–7.

    Article  PubMed  Google Scholar 

  31. Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med. 2008;60:357–63.

    Google Scholar 

  32. Nelson LD. Mixed venous oxygen measurements. In: Sprung CL, editor. The pulmonary artery catheter: methodology and clinical applications. Closter NJ: Critical Care Research Associates; 1993. p. 157–74.

    Google Scholar 

  33. Noseworthy MD, Bulte DP, Alfonsi J. BOLD magnetic resonance imaging of skeletal muscle. Semin Musculoskelet Radiol. 2003;7:307–15.

    Article  PubMed  Google Scholar 

  34. Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging. 1999;9:814–20.

    Article  CAS  PubMed  Google Scholar 

  35. O’Connor JPB, Jackson A, Buonaccorsi GA, Buckley DL, Roberts C, Watson Y, Cheung S, McGrath DM, Naish JH, Rose CJ, Dark PM, Jayson GC, Parker GJM. Organ-specific effects of oxygen and carbogen gas inhalation on tissue longitudinal relaxation times. Magn Reson Med. 2007;58:490–6.

    Article  PubMed  Google Scholar 

  36. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poulin MJ, Liang P-J, Robbins PA. Fast and slow components of cerebral blood flow response to step decreases in end-tidal PCO2 in humans. J Appl Physiol. 1998;85:388–97.

    CAS  PubMed  Google Scholar 

  38. Prisman E, Slessarev M, Azami T, Nayot D, Milosevic M, Fisher J. Modified oxygen mask to induce target levels of hyperoxia and hypercarbia during radiotherapy: a more effective alternative to carbogen. Int J Radiat Biol. 2007;83:457–62.

    Article  CAS  PubMed  Google Scholar 

  39. Prisman E, Slessarev M, Han J, Poublanc J, Mardimae A, Crawley A, Fisher J, Mikulis D. Comparison of the effects of independently-controlled end-tidal PCO 2 and PO2 on blood oxygen level-dependent (BOLD) MRI. J Magn Reson Imaging. 2008;27:185–91.

    Article  PubMed  Google Scholar 

  40. Raichle ME, Gusnard DA. Appraising the brain’s energy budget. Proc Natl Acad Sci U S A. 2002;99:10237–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rostrup E, Larsson HB, Toft PB, Garde K, Henriksen O. Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia. NMR Biomed. 1995;8:41–7.

    Article  CAS  PubMed  Google Scholar 

  42. Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol. 1979;46:599–602.

    CAS  PubMed  Google Scholar 

  43. Severinghaus JW. Current trends in continuous blood gas monitoring. Biotelem Patient Monit. 1979;6:9–15.

    CAS  PubMed  Google Scholar 

  44. Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage. 2005;25:850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G, Ansel C, Duffin J, Fisher JA. Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol Lond. 2007;581:1207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stainsby JA, Wright GA. Monitoring blood oxygen state in muscle microcirculation with transverse relaxation. Magn Reson Med. 2001;45:662–72.

    Article  CAS  PubMed  Google Scholar 

  47. Steiner LA, Balestreri M, Johnston AJ, Czosnyka M, Coles JP, Chatfield DA, Smielewski P, Pickard JD, Menon DK. Sustained moderate reductions in arterial CO2 after brain trauma Time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Med. 2004;30:2180–7.

    Article  PubMed  Google Scholar 

  48. Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging. 1997;7:220–5.

    Article  CAS  PubMed  Google Scholar 

  49. Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334:1642–8.

    Article  CAS  PubMed  Google Scholar 

  50. Tudorica A, Li HF, Hospod F, Delucia-Deranja E, Huang W, Patlak CS, Newman GC. Cerebral blood volume measurements by rapid contrast infusion and T2*- weighted echo planar MRI. Magn Reson Med. 2002;47:1145.

    Article  PubMed  Google Scholar 

  51. Uematsu H, Takahashi M, Hatabu H, Chin CL, Wehrli SL, Wehrli FW, Asakura T. Changes in T1 and T2 observed in brain magnetic resonance imaging with delivery of high concentrations of oxygen. J Comput Assist Tomogr. 2007;31:662–5.

    Article  PubMed  Google Scholar 

  52. Varon AJ. Hemodynamic monitoring: arterial and pulmonary artery catheters. In: Civetta JM, Taylor RW, Kirby RR, editors. Critical care. Philadelphia: J.B. Lippincott; 1992. p. 255–70.

    Google Scholar 

  53. Watson NA, Beards SC, Altaf N, Kassner A, Jackson A. The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography. Eur J Anaesthesiol. 2000;17:152–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wise RG, Pattinson KTS, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM, O’Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P. Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging. J Cereb Blood Flow Metab. 2007;27:1521–32.

    Article  CAS  PubMed  Google Scholar 

  55. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998;39:702–8.

    Article  CAS  PubMed  Google Scholar 

  56. Young IR, Clarke GJ, Baffles DR, Pennock JM, Doyle FH, Bydder GM. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr. 1981;5:543–7.

    Article  CAS  PubMed  Google Scholar 

  57. Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. Am J Neuroradiol. 2008;29:663–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank the MRC, the Wingate Foundation, and the EPSRC for contributing funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bulte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bulte, D. (2016). Hyperoxia and Functional MRI. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_13

Download citation

Publish with us

Policies and ethics