Skip to main content

Basic Principles of Magnetic Resonance Imaging

  • Chapter
3D Imaging Technologies in Atherosclerosis

Abstract

Magnetic resonance imaging (MRI) is a non-ionising, and generally non-invasive, imaging modality capable of producing detailed soft-tissue images in all body areas. This chapter initially describes the basic principles of MRI starting with the phenomenon of nuclear magnetisation and tissue relaxation. The concept of spatial localisation using magnetic field gradients is then explained, followed by a description of the hardware that comprises a typical MRI system. Finally, the standard MRI pulse sequences are introduced together with an explanation of some of the current techniques used to obtain high-quality morphological and functional images of the vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37–8.

    Article  CAS  Google Scholar 

  2. Bloch F, Hansen WW, Packard M. Nuclear induction. Phys Rev. 1946;69:127.

    Article  Google Scholar 

  3. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190–1.

    Article  CAS  Google Scholar 

  4. Mansfield P, Maudsley AA. Planar spin imaging by NMR. J Phys C Solid State Phys. 1976;9:L409–12.

    Article  CAS  Google Scholar 

  5. Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. Fonar image of the live human body. Physiol Chem Phys. 1977;9:97–100.

    CAS  PubMed  Google Scholar 

  6. Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the wrist by nuclear magnetic resonance. Nature (London). 1977;270:722–3.

    Article  CAS  Google Scholar 

  7. Edelstein WA, Hutchison JMS, Johnson G, Redpath TW. Spin warp NMR imaging and application to human whole-body imaging. Phys Med Biol. 1980;25:751–6.

    Article  CAS  PubMed  Google Scholar 

  8. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3:823–33.

    Article  CAS  PubMed  Google Scholar 

  9. Hayes CE, Mathis CM, Yuan C. Surface coil phased arrays for high-resolution imaging of the carotid arteries. J Magn Reson Imaging. 1996;6:109–12.

    Article  CAS  PubMed  Google Scholar 

  10. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology. 1996;199:49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med. 2007;58:973–81.

    Article  PubMed  Google Scholar 

  12. Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med. 2012;68:1423–38.

    Article  PubMed  Google Scholar 

  13. Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology. 2007;243:220–8.

    Article  PubMed  Google Scholar 

  14. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.

    Article  PubMed  Google Scholar 

  15. Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112:3437–44.

    Article  PubMed  Google Scholar 

  16. Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241:459–68.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nezafat R, Manning WJ. Coronary artery disease: high field strength coronary MRA–ready for prime time? Nat Rev Cardiol. 2009;6:676–8.

    Article  PubMed  Google Scholar 

  18. Miao C, Chen S, Macedo R, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2009;53:1708–15.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Graves Ph.D., FIPEM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graves, M.J., Zhu, C. (2015). Basic Principles of Magnetic Resonance Imaging. In: Trivedi, R., Saba, L., Suri, J. (eds) 3D Imaging Technologies in Atherosclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7618-5_6

Download citation

Publish with us

Policies and ethics