Skip to main content

The Road to fMRI Using Endogenous MR Blood Contrast

  • Chapter
  • First Online:
fMRI: From Nuclear Spins to Brain Functions

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

  • 3322 Accesses

Abstract

Looking back at my MRI result collected on May 9, 1991, recording visual cortex activation using deoxyhemoglobin contrast, it was clear that fortune smiled on the initial functional MRI (fMRI) experiment. The highly hypothetical link between endogenous MR blood contrast and brain activation turned out to be a clean MR signal response observable by the naked eye through a simple subtraction of the images of the baseline epoch from the images of stimulus ON epoch. I learned about the role of deoxyhemoglobin on the effect of the MR parameter T2 from the work of Dr. Keith Thulborn who was a radiology resident at the Massachusetts General Hospital (MGH) in early 1991. I was yet unaware of Dr. Seiji Ogawa’s published results on blood oxygenation level-dependent (BOLD) contrast, now a synonym for the MRI contrast of deoxyhemoglobin. Dr. Thulborn’s comments on deoxyhemoglobin suggested to me the possibility of applying the gradient-echo sequence, known to be highly sensitive to magnetic susceptibility, to look for MR brain signal change upon the challenges of sensory and cognitive stimuli. In the 3–4 years leading up to 1991, a constant research theme of the MGH Nuclear Magnetic Resonance (MGH-NMR) Center was MR susceptibility contrast. Major strides have been made in the use of spin echo, offset spin echo, and gradient-echo MR sequences to image the various manifestations of magnetic susceptibility. The innovative research on susceptibility at MGH provided the indispensable intellectual framework and inspiration for my pursuit of the deoxyhemoglobin signal contrast for functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  CAS  PubMed  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  CAS  Google Scholar 

  • Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, Brady TJ (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17:336–347

    Article  CAS  Google Scholar 

  • Fox PT, Raichle ME (1985) Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17:303–305

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83:1140–1144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144

    Article  CAS  Google Scholar 

  • Kwong K (1998) Research issues using echo-planar imaging for functional brain imaging. In: Schmitt F, Stehling MK, Turner R (eds), Echo-planar imaging: theory, technique and application. Springer, Berlin, pp 531–543

    Chapter  Google Scholar 

  • Kwong KK, Hopkins AL, Belliveau JW, Chesler DA, Porkka LM, McKinstry RC, Finelli DA, Hunter GJ, Moore JB, Barr RG, et al (1991) Proton NMR imaging of cerebral blood flow using H2(17)O. Magn Reson Med 22:154–158

    Article  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18

    Article  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990a) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990b) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Uğurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raichle ME (2000) A brief history of human functional brain mapping. In: Toga AW, Mazziotta JC (eds), Brain mapping: the systems. Academic Press, San Diego, pp 33–75

    Chapter  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  Google Scholar 

  • Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    Article  CAS  PubMed  Google Scholar 

  • Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  CAS  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wismer GL, Buxton RB, Rosen BR, Fisel CR, Oot RF, Brady TJ, Davis KR (1988) Susceptibility induced MR line broadening: applications to brain iron mapping. J Comput Assist Tomogr 12:259–265

    Article  CAS  PubMed  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth K. Kwong Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Kwong, K. (2015). The Road to fMRI Using Endogenous MR Blood Contrast. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_3

Download citation

Publish with us

Policies and ethics