Skip to main content

Experimental Methods and Instrumentation

  • Chapter
  • First Online:
Ion/Molecule Attachment Reactions: Mass Spectrometry
  • 1040 Accesses

Abstract

Chapter 4 discusses a variety of experimental methods and introduces instrumentation for the study of gas-phase ions and ion-molecule chemistry in general and of ion attachment processes in particular, with an emphasis on mass spectrometry (MS) methods. The section starts with a discussion on common methods to generate gas-phase alkali metal ions, to be applied in various ion-attachment experiments. Subsequently, (tandem) MS methods are discussed that enable the investigation of the structure of ions and the results of ion-molecule reactions. Separate sections are presented for beam instruments and ion-trapping instruments. In some cases, these instruments can be used to perform ion-molecule reactions as part of the measurement protocol. Emphasis is put on commercial available MS and MS– MS instruments. In subsequent sections, various other tools are discussed, that may be combined with MS and allow the study of gas-phase reactions of ions. These tools comprise (a) flowing-afterglow methods (FA-MS), including derived methods like selected-ion flow tubes (SIFT-MS) and proton-transfer reaction devices (PTRMS), (b) drift tubes, ion-mobility spectrometry (IMS) and IMS–MS, and (c) highpressure MS instruments. The text provides ample references for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gronert S. Mass spectrometric studies of organic ion/molecule reactions. Chem Rev. 2001;101:329–60.

    CAS  PubMed  Google Scholar 

  2. Blewett J, Jones EJ. Filament sources of positive ions. Phys Rev. 1936;50:464–8.

    CAS  Google Scholar 

  3. Selvin PC, Fujii T. Lithium ion attachment mass spectrometry: instrumentation and features. Rev Sci Instrum. 2001;72:2248–52.

    CAS  Google Scholar 

  4. Campbell EEB, Levine RD. Delayed ionization and fragmentation en route to thermoionic emission: statistics and dynamics. Annu Rev Phys Chem. 2000;51:65–98.

    CAS  PubMed  Google Scholar 

  5. Bombick D, Pinkston JD, Allison J. Potassium ion chemical ionization and other uses of an alkali thermoionic emitter in mass spectrometry. Anal Chem. 1984;56:396–402.

    CAS  Google Scholar 

  6. Hodges RV, Beauchamp JL. Application of alkali ions in chemical ionization mass spectrometry. Anal Chem. 1976;48:825–9.

    CAS  Google Scholar 

  7. Cody RB, Burnier RC, Reents WD Jr, Carlin TJ, McCrery DA, Lengel RK, Freiser BS. Laser ionization source for ion cyclotron resonance spectroscopy. Application to atomic metal ion chemistry. Int J Mass Spectrom Ion Phys. 1980;33:37–43.

    CAS  Google Scholar 

  8. Aubriet F, Muller JF. Laser ablation mass spectrometry of inorganic transition metal compounds. Additional knowledge for the understanding of ion formation. J Am Soc Mass Spectrom. 2008;19:488–501.

    CAS  PubMed  Google Scholar 

  9. Freiser BS. Gas-phase metal ion chemistry, J Mass Spectrom. 1996;31:703–15.

    CAS  Google Scholar 

  10. Carré V, Aubriet F, Scheepers PT, Krier G, Muller JF. Potential of laser ablation and laser desorption mass spectrometry to characterize organic and inorganic environmental pollutants on dust particles. Rapid Commun Mass Spectrom. 2005;19:871–80.

    PubMed  Google Scholar 

  11. Lattimer RP, Schulten HR. Field ionization and field desorption mass spectrometry: past, present, and future. Anal Chem. 1989;61:1201A–15A.

    CAS  Google Scholar 

  12. Fenselau C, Cotter RJ. Chemical aspects of fast atom bombardment. Chem Rev. 1987;87:501–12.

    CAS  Google Scholar 

  13. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17:337–66.

    CAS  Google Scholar 

  14. Kéki S, Deák G, Zsuga M. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 2001;36:1312–6.

    PubMed  Google Scholar 

  15. Niessen WMA. Information from atmospheric-pressure ionization mass spectra. In: Niessen WMA, editor. Encyclopedia of mass spectrometry, Vol. 8. Oxford: Elsevier; 2006. p. 202–32.

    Google Scholar 

  16. Jang S, Song MJ, Kim H, Choi SS. Formation of metal complex ions from amino acid in the presence of Li+, Na+ and K+ by electrospray ionization: metal replacement of hydrogen in the ligands. J Mass Spectrom. 2011;46:496–501.

    CAS  PubMed  Google Scholar 

  17. Rodriquez CF, Guo X, Shoeib T, Hopkinson AC, Siu KW. Formation of [M–nH + mNa](m-n)+ and [M–nH + mK](m-n)+ ions in electrospray mass spectrometry of peptides and proteins. J Am Soc Mass Spectrom. 2000;11:967–75.

    CAS  PubMed  Google Scholar 

  18. Poon C, Kaplan H, Mayer PM. Methylating peptides to prevent adduct ion formation also directs cleavage in collision-induced dissociation mass spectrometry. Eur J Mass Spectrom. 2004;10:39–46.

    CAS  Google Scholar 

  19. Busch KL, Glish GL, McLuckey SA. Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry. New York: VCH; 1988.

    Google Scholar 

  20. Hipple JA, Fox RE, Condon EU. Metastable ions formed by electron impact in hydrocarbon gases. Phys Rev. 1946;69:347–356.

    CAS  Google Scholar 

  21. Yost RA, Enke CG. Selected ion fragmentation with a tandem quadrupole mass spectrometer J Am Chem Soc. 1978;100:2274–5.

    CAS  Google Scholar 

  22. Louris JN, Cooks RG, Syka JEP, Kelley PE, Stafford GC Jr, Todd JFJ. Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry. Anal Chem. 1987;59:1677–85.

    CAS  Google Scholar 

  23. Marshall A, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev. 1998;17:1–35.

    CAS  PubMed  Google Scholar 

  24. Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli RS, Hoyes J, Bateman RH. High-sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole–orthogonal acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 1996;10:889–96.

    CAS  PubMed  Google Scholar 

  25. Hager JW. A new linear ion trap mass spectrometer, Rapid Commun Mass Spectrom. 2002;16:512–26.

    CAS  Google Scholar 

  26. Bienvenut WV, Déon C, Pasquarello C, Campbell JM, Sanchez JC, Vestal ML, Hochstrasser DF. Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics. 2002;2:868–76.

    CAS  PubMed  Google Scholar 

  27. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks GR. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.

    CAS  PubMed  Google Scholar 

  28. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem. 2006;78:2113–20.

    CAS  PubMed  Google Scholar 

  29. Schwartz JC, Wade AP, Enke CG, Cooks RG. Systematic delineation of scan modes in multidimensional mass spectrometry. Anal Chem. 1990;62:1809–18.

    CAS  PubMed  Google Scholar 

  30. van Dongen WD, Niessen WMA. LC-MS systems for quantitative bioanalysis. Bioanalysis. 2012;4:2391–9.

    PubMed  Google Scholar 

  31. Cherta L, Portolés T, Beltran J, Pitarch E, Mol JG, Hernández F. Application of gas chromatography-(triple quadrupole) mass spectrometry with atmospheric pressure chemical ionization for the determination of multiclass pesticides in fruits and vegetables. J Chromatogr A. 2013;1314:224–40.

    CAS  PubMed  Google Scholar 

  32. Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39:1091–12.

    CAS  PubMed  Google Scholar 

  33. Laskin J, Futrell JH. Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom Rev. 2005;24:135–67.

    CAS  PubMed  Google Scholar 

  34. Zhurov KO, Fornelli L, Wodrich MD, Laskay ÜA, Tsybin YO. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem Soc Rev. 2013;42:5014–30.

    CAS  PubMed  Google Scholar 

  35. Johnson JV, Yost RA, Kelley PE, Bradford DC. Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Anal Chem. 1990;62:2162–72.

    CAS  Google Scholar 

  36. De Hoffmann E, Stroobant V. Mass spectrometry. Principles and applications. 3. ed. Chichester: Wiley; 2007.

    Google Scholar 

  37. Johnson JV, Yost RA. Tandem mass spectrometry for trace analysis Anal Chem. 1985;57:758A–68A.

    CAS  Google Scholar 

  38. Hunt DF, Shabanowitz J, Harvey TM, Coates ML. Analysis of organics in the environment by functional group using a triple quadrupole mass spectrometer. J Chromatogr. 1983;271:93–105.

    CAS  Google Scholar 

  39. Montesano C, Sergi M, Moro M, Napoletano S, Romolo FS, Del Carlo M, Compagnone D, Curini R. Screening of methylenedioxyamphetamine- and piperazine-derived designer drugs in urine by LC-MS/MS using neutral loss and precursor ion scan. J Mass Spectrom. 2013;48:49–59.

    CAS  PubMed  Google Scholar 

  40. Jian W, Liu HF, Zhao W, Jones E, Zhu M. Simultaneous screening of glutathione and cyanide adducts using precursor ion and neutral loss scans-dependent product ion spectral acquisition and data mining tools. J Am Soc Mass Spectrom. 2012;23:964–76.

    CAS  PubMed  Google Scholar 

  41. Joly N, Vaillant C, Cohen AM, Martin P, El Essassi M, Massoui M, Banoub J. Structural determination of the novel fragmentation routes of zwitteronic morphine opiate antagonists naloxonazine and naloxone hydrochlorides using electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:1062–74.

    CAS  PubMed  Google Scholar 

  42. Bijlsma L, Sancho JV, Hernández F, Niessen WMA. Fragmentation pathways of drugs of abuse and their metabolites based on QTOF MS/MS and MSE accurate-mass spectra. J Mass Spectrom. 2011;46:865–75.

    CAS  PubMed  Google Scholar 

  43. Mansoori BA, Dyer EW, Lock CM, Bateman K, Boyd RK, Thomson BA. Analytical performance of a high-pressure radiofrequency-only quadrupole collision cell with a axial field applied by using conical rods. J Am Soc Mass Spectrom. 1998;9:775–88.

    CAS  Google Scholar 

  44. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004;18:2401–14.

    CAS  PubMed  Google Scholar 

  45. Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole–time-of-flight mass spectrometry. J Mass Spectrom. 2001;36:849–65.

    CAS  PubMed  Google Scholar 

  46. Xia YQ, Miller JD, Bakhtiar R, Franklin RB, Liu DQ. Use of a quadrupole linear ion trap mass spectrometer in metabolite identification and bioanalysis. Rapid Commun Mass Spectrom. 2003;17:1137–45.

    CAS  PubMed  Google Scholar 

  47. Hopfgartner G, Varesio E, Tschäppät V, Grivet C, Bourgogne E, Leuthold LA. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom. 2004;39:845–55.

    CAS  PubMed  Google Scholar 

  48. Tanner SD, Baranov VI, Bandua DR. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim Acta B. 2002;57:1361–452.

    Google Scholar 

  49. Yip Y-C, Sham W-C. Applications of collision/reaction cell technology in isotope dilution mass spectrometry. Trends Anal Chem. 2007;26:727–43.

    CAS  Google Scholar 

  50. Schmitt JP, Dawson PH, Beaulieu N. Chemical synthesis inside the collision cell of a MS/MS system: 1—Formation of adduct ions between protonated esters and ammonia. Org Mass Spectrom. 1985;20:269–75.

    Google Scholar 

  51. Pachuta RR, Kenttämaa HI, Cooks RG, Zennie TM, Ping C, Chang C-J, Cassady JM. Analysis of natural products by tandem mass spectrometry employing reactive collisions with ethyl vinyl ether. Org Mass Spectrom. 1988;23:10–15.

    CAS  Google Scholar 

  52. Cole MJ, Enke CG. Fast atom bombardment tandem mass spectrometry employing ion–molecule reactions for the differentiation of phospholipid classes. J Am Soc Mass Spectrom. 1991;2:470–5.

    CAS  PubMed  Google Scholar 

  53. Moraes LAB, Mendes MA, Sparrapan R, Eberlin MN. Transacetalization with gaseous carboxonium and carbosulfonium ions. J Am Soc Mass Spectrom. 2001;12:14–22.

    CAS  PubMed  Google Scholar 

  54. Chen H, Zheng X, Cooks RG. Ketalization of phosphonium ions by 1,4-dioxane: selective detection of the chemical warfare agent simulant DMMP in mixtures using ion/molecule reactions. J Am Soc Mass Spectrom. 2003;14:182–8.

    CAS  PubMed  Google Scholar 

  55. Kostiainen R, Auriola S. Isomer-specific determination of tetrachlorodibenzo-p-dioxins by tandem mass spectrometry using low-energy reactive collisions between oxygen and negative molecular ions. Rapid Commun Mass Spectrom. 1988;2:135–7.

    CAS  Google Scholar 

  56. Jalonen J. Application of reactive collisions for differentiation of isomeric organic ions in the gas phase. J Chem Soc Chem Commun. 1985:872–4.

    Google Scholar 

  57. Meyerhoffer WJ, Bursey MM. Differentiation of the isomeric 1,2-cyclopentanediols by ion–molecule reactions in a triple quadrupole mass spectrometer. Org Mass Spectrom. 1989;24:169–75.

    CAS  Google Scholar 

  58. Schwartz JC, Schey KL, Cooks RG. A penta-quadrupole instrument for reaction intermediate scans and other MS–MS–MS experiments. Int J Mass Spectrom Ion Proc. 1990;101:1–20.

    CAS  Google Scholar 

  59. Eberlin MN. Triple-stage pentaquadrupole (QqQqQ) mass spectrometry and ion–molecule reactions. Mass Spectrom Rev. 1997;16:113–44.

    CAS  Google Scholar 

  60. Jonscher KR, Yates JR 3rd. The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal Biochem. 1997;244:1–15.

    CAS  PubMed  Google Scholar 

  61. March RE. An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom. 1997;32:351–69.

    CAS  Google Scholar 

  62. Schwartz JC, Senko MW, Syka JEP. A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom. 2002;13:659–69.

    CAS  PubMed  Google Scholar 

  63. Douglas DJ, Frank AJ, Mao D. Linear ion traps in mass spectrometry. Mass Spectrom Rev. 2005;24:1–29.

    CAS  PubMed  Google Scholar 

  64. Wu SL, Jardine I, Hancock WS, Karger BL. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Spectrom. 2004;18:2201–7.

    CAS  PubMed  Google Scholar 

  65. Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S. A dual pressure linear ion trap orbitrap instrument with very high sequencing speed. Mol Cell Proteomics. 2009;8:2759–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev. 2010;2:23–60.

    PubMed Central  PubMed  Google Scholar 

  67. van der Hooft JJ, Vervoort J, Bino RJ, Beekwilder J, de Vos RC. Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation. Anal Chem. 2011;83:409–16.

    PubMed  Google Scholar 

  68. Gronert S. Quadrupole ion trap studies of fundamental organic reactions. Mass Spectrom Rev. 2005;24:100–120.

    CAS  PubMed  Google Scholar 

  69. McLuckey SA, Glish GL, Asano KG, Van Berkel GJ. Self chemical ionization in an ion trap mass spectrometer. Anal Chem. 1988;60:2312–4.

    CAS  Google Scholar 

  70. Brodbelt JS, Louris JN, Cooks RG. Chemical ionization in an ion trap mass spectrometer. Anal Chem. 1987;59:1278.

    Google Scholar 

  71. Pons A, Lavigne V, Darriet P, Dubourdieu D. Determination of 3-methyl-2,4-nonanedione in red wines using methanol chemical ionization ion trap mass spectrometry. J Chromatogr A. 2011;1218:7023–30.

    CAS  PubMed  Google Scholar 

  72. Libong D, Bouchonnet S, Ricordel I. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry. J Anal Toxicol. 2003;27:24–9.

    CAS  PubMed  Google Scholar 

  73. Tzing SH, Ghule A, Chang JY, Ling YC. Selective adduct formation by furan chemical ionization reagent in gas chromatography ion trap mass spectrometry. J Mass Spectrom. 2003;38:401–8.

    CAS  PubMed  Google Scholar 

  74. Bouchonnet S, Kinani S, Sablier M. Does the reagent gas influence collisional activation when performing in situ chemical ionization with an ion trap mass spectrometer? Eur J Mass Spectrom. 2007;13:223–6.

    CAS  Google Scholar 

  75. Ryzhov V, Sunderlin SS, Keller LMM, Gaillard ER. Measuring gas-phase basicities of amino acids using an ion trap mass spectrometer. A physical chemistry laboratory experiment. J Chem Educ. 2005;82:1071–3.

    Google Scholar 

  76. Nourse BD, Cooks RG. Proton affinity determination using the kinetic method in an ion trap mass spectrometer. Int J Mass Spectrom Ion Proc. 1991;106:249–72.

    CAS  Google Scholar 

  77. McCarley TD, Brodbelt J. Structurally diagnostic ion–molecule reactions and collisionally activated dissociation of 1,4-benzodiazepines in a quadrupole ion trap mass spectrometer. Anal Chem. 1993;65:2380–8.

    CAS  PubMed  Google Scholar 

  78. Abirami S, Wong CC, Tsang CW, Ma NL. Dissociation of alkaliated alanine in the gas phase: the role of the metal cation. Chemistry. 2005;11:5289–301.

    CAS  PubMed  Google Scholar 

  79. Fu M, Duan P, Li S, Habicht SC, Pinkston DS, Vinueza NR, Kenttämaa HI. Regioselective ion–molecule reactions for the mass spectrometric differentiation of protonated isomeric aromatic diamines. Analyst. 2008;133:452–4.

    CAS  PubMed  Google Scholar 

  80. O’Hair RA. The 3D quadrupole ion trap mass spectrometer as a complete chemical laboratory for fundamental gas-phase studies of metal mediated chemistry. Chem Commun (Camb). 2006;14:1469–81.

    Google Scholar 

  81. Pitterl SJ, McLuckey SA. Recent developments in the ion-ion chemistry of high-mass multiply charged ions. Mass Spectrom Rev. 2005;24:931–58.

    Google Scholar 

  82. Xia Y, McLuckey SA. Evolution of instrumentation for the study of gas-phase ion-ion chemistry via mass spectrometry. J Am Soc Mass Spectrom. 2008;19:173–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom Rev. 2004;23:161–227.

    CAS  PubMed  Google Scholar 

  84. Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B. 2009;877:2673–95.

    CAS  Google Scholar 

  85. Hsu FF, Turk J. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:587–99.

    CAS  PubMed  Google Scholar 

  86. Cheng C, Gross ML. Applications and mechanisms of charge-remote fragmentation. Mass Spectrom Rev. 2000;19:398–420.

    CAS  PubMed  Google Scholar 

  87. Michael SM, Chien BM, Lubman DM. An ion trap storage/time-of-flight mass spectrometer. Rev Sci Instrum. 1992;63:4277–84.

    CAS  Google Scholar 

  88. Michael SM, Chien BM, Lubman DM. Detection of electrospray ionization using a quadrupole ion trap storage/reflectron time-of-flight mass spectrometer. Anal Chem. 1993;65:2614–20.

    CAS  Google Scholar 

  89. Liu ZY. An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies. J Mass Spectrom. 2012;47:1627–42.

    CAS  PubMed  Google Scholar 

  90. Römpp A, Taban IM, Mihalca R, Duursma MC, Mize TH, McDonnel LA, Heeren RM. Examples of Fourier transform ion cyclotron resonance mass spectrometry developments: from ion physics to remote access biochemical mass spectrometry. Eur J Mass Spectrom. 2005;11:443–56.

    Google Scholar 

  91. Kelleher NL, Lin HY, Valaskovicm GA, Aserud DJ, Fridriksson EK, McLafferty FW. Top-down versus bottom-up protein characterization by tandem high-resolution mass spectrometry, J Am Chem Soc. 1999;121:806–12.

    CAS  Google Scholar 

  92. Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev. 2005;24:168–200.

    CAS  PubMed  Google Scholar 

  93. Patrie SM, Charlebois JP, Whipple D, Kelleher NL, Hendrickson CL, Quinn JP, Marshall AG, Mukhopadhyay B. Construction of a hybrid quadrupole–Fourier transform ion cyclotron resonance mass spectrometer for versatile MS–MS above 10 kDa. J Am Soc Mass Spectrom. 2004;15:1099–108.

    CAS  PubMed  Google Scholar 

  94. Syka JE, Marto JA, Bai DL, Horning S, Senko MW, Schwartz JC, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt DF. Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J Proteome Res. 2004;3:621–6.

    CAS  PubMed  Google Scholar 

  95. Wu R, McMahon TB. Structures, energetics, and dynamics of gas phase ions studied by FTICR and HPMS. Mass Spectrom Rev. 2009;28:546–85.

    PubMed  Google Scholar 

  96. Nibbering NMM. Gas-phase reactions of organic anions. Adv Phys Org Chem. 1988;24:1–55.

    CAS  Google Scholar 

  97. Raczyńska ED, Gal JF, Maria PC, Zientara K, Szelag M. Application of FT-ICR-MS for the study of proton-transfer reactions involving biomolecules. Anal Bioanal Chem. 2007;389:1365–80.

    PubMed  Google Scholar 

  98. Somogyi A. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments. J Am Soc Mass Spectrom. 2008;19:1771–5.

    CAS  PubMed  Google Scholar 

  99. Bou-Assaf GM, Chamoun JE, Emmett MR, Fajer PG, Marshall AG. Complexation and calcium-induced conformational changes in the cardiac troponin complex monitored by hydrogen/deuterium exchange and FT-ICR mass spectrometry. Int J Mass Spectrom. 2011;302:116–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4:709–12.

    CAS  PubMed  Google Scholar 

  101. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann, M, Horning S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics. 2011;10:1–12 M111.011015.

    Google Scholar 

  102. Senko MW, Remes PM, Canterbury JD, Mathur R, Song Q, Eliuk SM, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Novel parallelized quadrupole/linear ion trap/orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem. 2013;85:11710–4.

    CAS  PubMed  Google Scholar 

  103. Fehsenfeld FC, Schmeltekopf AL, Goldan PD, Schiff HI, Ferguson EE. Thermal energy ion-neutral reaction rates. I. Some reactions of helium ions. J Chem Phys. 1966;44:4087–94.

    CAS  Google Scholar 

  104. Graul ST, Squires RR. Advances in flow reactor techniques for the study of gas-phase ion chemistry. Mass Spectrom Rev. 1988;7:263–358.

    CAS  Google Scholar 

  105. Smith D, Španĕl P, Holland TA, al Singari W, Elder JB. Selected ion flow tube mass spectrometry of urine headspace. Rapid Commun Mass Spectrom. 1999;13:724–9.

    CAS  PubMed  Google Scholar 

  106. Španěl P, Smith D. Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom Rev. 2011;30:236–67.

    PubMed  Google Scholar 

  107. Andrade FJ, Wetzel WC, Chan GCY, Webb MR, Gamez G, Ray SJ, Hieftje GM. A new, versatile, direct-current helium atmospheric-pressure glow discharge. J Anal At Spectrom. 2006;21:1175–84.

    CAS  Google Scholar 

  108. Rowe BR, Viggiano AA, Fehsenfeld FC, Fahey DW, Ferguson EE. Reactions between neutrals clustered on ions. J Chem Phys. 1982;76:742–3.

    CAS  Google Scholar 

  109. Castleman AW Jr, Weil KG, Sigsworth SW, Leuchtner RE, Keesee RG. Considerations of the rates and lifetimes of intermediate complexes for the association of various ligands to metal ions: Ag+ and Cu+. J Chem Phys. 1987;86:3829–35.

    CAS  Google Scholar 

  110. Poutsma JC, Seburg RA, Chyall LJ, Sunderlin LS, Hill BT, Hu J, Squires RR. Combining electrospray ionization and the flowing afterglow method. Rapid Commun Mass Spectrom. 1997;11:489–93.

    CAS  PubMed  Google Scholar 

  111. Ferguson EE. A Personal history of the early development of the flowing afterglow technique for ion–molecule reaction studies. J Am Soc Mass Spectrom. 1992;3:479–86.

    CAS  PubMed  Google Scholar 

  112. Ferguson EE. Mass spectrometry in ionospheric research. Mass Spectrom Rev. 2007;26:142–9.

    CAS  PubMed  Google Scholar 

  113. Fournier JA, Shuman NS, Melko JJ, Ard SG, Viggiano AA. A novel technique for measurement of thermal rate constants and temperature dependences of dissociative recombination: CO2 +, CF3 +, N2O+, C7H8 +, C7H7 +, C6H6 +, C6H5 +, C5H6 +, C4H4 +, and C3H3 +. J Chem Phys. 2013;138:154201.

    Google Scholar 

  114. Ichino T, Andrews DH, Rathbone GJ, Misaizu F, Calvi RM, Wren SW, Kato S, Bierbaum VM, Lineberger WC. Ion chemistry of 1H-1,2,3-triazole. J Phys Chem B. 2008;112:545–57.

    CAS  PubMed  Google Scholar 

  115. Shuman NS, Friedman JF, Miller TM, Viggiano AA. Electron attachment to 14 halogenated alkenes and alkanes, 300–600 K. J Chem Phys. 2012;137:164306.

    Google Scholar 

  116. Shuman NS, Miller TM, Viggiano AA, Troe J. Electron attachment to CF3 and CF3Br at temperatures up to 890 K: experimental test of the kinetic modeling approach. J Chem Phys. 2013;138:204316.

    PubMed  Google Scholar 

  117. Shuman NS, Miller TM, Friedman JF, Viggiano AA. Electron attachment to Fe(CO)n (n = 0–5). J Phys Chem A. 2013;117:1102–9.

    CAS  PubMed  Google Scholar 

  118. Miller TM, Friedman JF, Caples CM, Shuman NS, Van Doren JM, Bardaro MF Jr, Nguyen P, Zweiben C, Campbell MJ, Viggiano AA. Electron attachment to sulfur oxyhalides: SOF2, SOCl2, SO2F2, SO2Cl2, and SO2FCl attachment rate coefficients, 300–900 K. J Chem Phys. 2010;132:214302.

    Google Scholar 

  119. Garver JM, Yang Z, Kato S, Wren SW, Vogelhuber KM, Lineberger WC, Bierbaum VM. Gas phase reactions of 1,3,5-triazine: proton transfer, hydride transfer, and anionic σ-adduct formation. J Am Soc Mass Spectrom. 2011;22:1260–72.

    CAS  PubMed  Google Scholar 

  120. Smith D, Španěl P. On-line determination of the deuterium abundance in breath water vapour by flowing afterglow mass spectrometry with applications to measurements of total body water. Rapid Commun Mass Spectrom. 2001;15:25–32.

    CAS  PubMed  Google Scholar 

  121. Španěl P, Smith D. Accuracy and precision of flowing afterglow mass spectrometry for the determination of the deuterium abundance in the headspace of aqueous liquids and exhaled breath water. Rapid Commun Mass Spectrom. 2001;15:867–72.

    PubMed  Google Scholar 

  122. Davies S, Španěl P, Smith D. Rapid measurement of deuterium content of breath following oral ingestion to determine body water. Physiol Meas. 2001;22:651–9.

    CAS  PubMed  Google Scholar 

  123. Jecklin MC, Gamez G, Touboul D, Zenobi R. Atmospheric pressure glow discharge desorption mass spectrometry for rapid screening of pesticides in food. Rapid Commun Mass Spectrom. 2008;22:2791–8.

    CAS  PubMed  Google Scholar 

  124. Tan BK, Smith D, Španěl P, Davies SJ. Dispersal kinetics of deuterated water in the lungs and airways following mouth inhalation: real-time breath analysis by flowing afterglow mass spectrometry (FA-MS). J Breath Res. 2010;4:017109.

    PubMed  Google Scholar 

  125. Tan BK, Davies SJ, Španěl P, Smith D. Injection of deuterated water into the pulmonary/alveolar circulation; measurement of HDO in exhaled breath and implications to breath analysis. J Breath Res. 2012;6:036005.

    Google Scholar 

  126. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W. Proton transfer reaction mass spectrometry: on-line trace gas analysis at ppb level. Int J Mass Spectrom Ion Proc. 1995;149/150:609–19.

    CAS  Google Scholar 

  127. Blake RS, Monks PS, Ellis AM. Proton-transfer reaction mass spectrometry. Chem Rev. 2009;109:861–96.

    CAS  PubMed  Google Scholar 

  128. Jordan A, Haidacher S, Hanel G, Hartungen E, Herbig J, Maerk L, Schottkowsky R, Seehauser H, Sulzer P, Maerk TD. An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR + SRI-MS). Int J Mass Spectrom. 2009;286:32–8.

    CAS  Google Scholar 

  129. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP. Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst. 2004;129:984–994.

    CAS  Google Scholar 

  130. Hill HH Jr, Siems WF, St Louis RH, McMinn DG. Ion mobility spectrometry. Anal Chem. 1990;62:1201A–9A.

    CAS  PubMed  Google Scholar 

  131. Lindinger W, Albritton DL. Mobilities of various mass-identified positive ions in helium and argon. J Chem Phys. 1975;62:3517–22.

    CAS  Google Scholar 

  132. Shvartsburg AA, Jarrold MF. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett. 1996;261:86–91.

    CAS  Google Scholar 

  133. Wyttenbach T, von Helden G, Batka JJ Jr, Carlat D, Bowers MT. Effect of the long-range potential on ion mobility measurements. J Am Soc Mass Spectrom. 1997;8:275–82.

    CAS  Google Scholar 

  134. Revercomb HE, Mason EA. Theory of plasma chromatography/gaseous electrophoresis—A review. Anal Chem. 1975;47:970–83.

    CAS  Google Scholar 

  135. Bowers MT, Kemper PR, von Helden G, van Koppen PA. Gas-phase ion chromatography: transition metal state selection and carbon cluster formation. Science. 1993;260(5113):1446–51.

    CAS  PubMed  Google Scholar 

  136. Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S, Vadlamannati S. Detection of explosives in hair using ion mobility spectrometry. J Forensic Sci. 2008;53:690–3.

    CAS  PubMed  Google Scholar 

  137. Zimmermann S, Barth S, Baether WK, Ringer J. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents. Anal Chem. 2008;80:6671–6.

    CAS  PubMed  Google Scholar 

  138. Wyttenbach T, von Helden G, Bowers MT. Gas-phase conformation of biological molecules: Bradykinin. J Am Chem Soc. 1996;118:8355–64.

    CAS  Google Scholar 

  139. Clemmer DE, Jarrold MF. Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom. 1997;32:577–92.

    CAS  Google Scholar 

  140. Srebalus CA, Li J, Marshall WS, Clemmer DE. Gas-phase separations of electrosprayed peptide libraries. Anal Chem. 1999;71:3918–27.

    CAS  PubMed  Google Scholar 

  141. Lapthorn C, Pullen F, Chowdhry BZ. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev. 2013;32:43–71.

    CAS  PubMed  Google Scholar 

  142. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43:1–22.

    CAS  PubMed  Google Scholar 

  143. Williams DM, Pukala TL. Novel insights into protein misfolding diseases revealed by ion mobility-mass spectrometry. Mass Spectrom Rev. 2013;32:169–87.

    CAS  PubMed  Google Scholar 

  144. Wyttenbach T, Pierson NA, Clemmer DE, Bowers MT. Ion mobility analysis of molecular dynamics. Annu Rev Phys Chem. 2014;65:175–96.

    CAS  PubMed  Google Scholar 

  145. Guevremont R. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A. 2004;1058:3–19.

    CAS  PubMed  Google Scholar 

  146. Kolakowski BM, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst. 2007;132:842–64.

    CAS  PubMed  Google Scholar 

  147. Tsai CW, Yost RA, Garrett TJ. High-field asymmetric waveform ion mobility spectrometry with solvent vapor addition: a potential greener bioanalytical technique. Bioanalysis. 2012;4:1363–75.

    CAS  PubMed  Google Scholar 

  148. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom. 2007;261:1–12.

    CAS  Google Scholar 

  149. Koeniger SL, Merenbloom SI, Valentine SJ, Jarrold MF, Udseth HR, Smith RD, Clemmer DE. An IMS–IMS analogue of MS–MS. Anal Chem. 2006;78:4161–74.

    CAS  PubMed  Google Scholar 

  150. Zhong Y, Hyung SJ, Ruotolo BT. Ion mobility-mass spectrometry for structural proteomics. Expert Rev Proteomics. 2012;9:47–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Jurneczko E, Barran PE. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 2011;136:20–8.

    CAS  PubMed  Google Scholar 

  152. Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJ. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev. 2010;39:1633–55.

    CAS  PubMed  Google Scholar 

  153. Enders JR, McLean JA. Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility-mass spectrometry. Chirality. 2009;21:E253–264.

    Google Scholar 

  154. Xia YQ, Wu ST, Jemal M. LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components. Anal Chem. 2008;80:7137–43.

    CAS  PubMed  Google Scholar 

  155. Olivova P, Chen W, Chakraborty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:29–40.

    CAS  PubMed  Google Scholar 

  156. Shimizu A, Ohe T, Chiba M. A novel method for the determination of the site of glucuronidation by ion mobility spectrometry-mass spectrometry. Drug Metab Dispos. 2012;40:1456–9.

    CAS  PubMed  Google Scholar 

  157. Dear GJ, Munoz-Muriedas J, Beaumont C, Roberts A, Kirk J, Williams JP, Campuzano I. Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun Mass Spectrom. 2010;24:3157–62.

    CAS  PubMed  Google Scholar 

  158. Shimizu A, Chiba M. Ion mobility spectrometry-mass spectrometry analysis for the site of aromatic hydroxylation. Drug Metab Dispos. 2013;41:1295–9.

    PubMed  Google Scholar 

  159. Badman ER, Cooks RG. Miniature mass analyzers. J Mass Spectrom. 2000;35:659–71.

    CAS  PubMed  Google Scholar 

  160. Peng Y, Austin DE. New approaches to miniaturizing ion trap mass analyzers. Trends Anal Chem. 2011;30:1560–7.

    CAS  Google Scholar 

  161. Whitten WB, Reilly PT, Ramsey JM. High-pressure ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:1749–52.

    CAS  PubMed  Google Scholar 

  162. Misharin A, Novoselov K, Laiko V, Doroshenko VM. Development and characterization of a field-deployable ion-trap mass spectrometer with an atmospheric pressure interface. Anal Chem. 2012;84:10105–12.

    CAS  PubMed  Google Scholar 

  163. Sparkman OD, Bierbaum VM. Focus on field-portable and miniature mass spectrometers. Presentations from the 12th Sanibel conference on mass spectrometry. J Am Soc Mass Spectrom. 2001;12:617–8.

    Google Scholar 

  164. Munson MSB, Franklin JL, Field FH. High pressure mass spectrometric study of alkanes. J Phys Chem. 1964;68:3098–107.

    CAS  Google Scholar 

  165. Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc. 1966;88:2621–30.

    CAS  Google Scholar 

  166. Kebarle P. Ion thermochemistry and solvation from gas-phase ion equilibria. Ann Rev Phys Chem. 1977;28:445–76.

    CAS  Google Scholar 

  167. Cunningham AJ, Payzant JD, Kebarle P. A kinetic study of the proton hydrate H+ (H2O)n equilibria in the gas phase. J Am Chem Soc. 1972;94:7627–32.

    CAS  Google Scholar 

  168. Searles SK, Kebarle P. Hydration of the potassium ion in the gas phase: enthalpies and entropies of hydration reactions: K+ (H2O)n−1 + H2O = K+ (H2O)n for n = 1 to n = 6. Can J Chem. 1969;47:2619–27.

    CAS  Google Scholar 

  169. Kebarle P, Verkerk UH. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 2009;28:898–917.

    CAS  PubMed  Google Scholar 

  170. Klassen JS, Blades AT, Kebarle P. Determinations of ion–molecule equilibria involving ions produced by electrospray. Hydration of protonated amines, diamines, and some small peptides. J Phys Chem. 1995;99:15509–17.

    CAS  Google Scholar 

  171. Tang IN, Castleman AW Jr. Mass spectrometric study of the gas-phase hydration of the monovalent lead ion. J Chem Phys. 1972;57:3638–44.

    CAS  Google Scholar 

  172. Tang IN, Castleman AW Jr. Mass spectrometric study of gas-phase clustering reactions: hydration of the monovalent bismuth ion. J Chem Phys. 1974;60:3981–6.

    CAS  Google Scholar 

  173. Raspopov SA, McMahon TB. A high-pressure mass spectrometric and density functional theory investigation of the thermochemical properties and structure of protonated dimers and trimers of glycine. J Mass Spectrom. 2005;40:1536–45.

    CAS  PubMed  Google Scholar 

  174. Wu R, McMahon TB. Stabilization of zwitterionic structures of amino acids (Gly, Ala, Val, Leu, Ile, Ser and Pro) by ammonium ions in the gas phase. J Am Chem Soc. 2008;130:3065–78.

    CAS  PubMed  Google Scholar 

  175. Vestal ML, Blakley CR, Ryan PW, Futrell JH. New crossed-beam apparatus for the study of ion–molecule collision processes. Rev Sci Instrum. 1976;47:15–26.

    CAS  Google Scholar 

  176. Wesdemiotis C, McLafferty FW. Neutralization–reionization mass spectrometry. Chem Rev. 1987;87:485–500.

    CAS  Google Scholar 

  177. Saykally RJ, Woods RC. High resolution spectroscopy of molecular ions. Ann Rev Phys Chem. 1981;32:403–31.

    CAS  Google Scholar 

  178. Polfer NC, Oomens J. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom Rev. 2009;28:468–94.

    CAS  PubMed  Google Scholar 

  179. Polfer NC, Oomens J. Reaction products in mass spectrometry elucidated with infrared spectroscopy. Phys Chem Chem Phys. 2007;9:3804–17.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried M.A. Niessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niessen, W. (2015). Experimental Methods and Instrumentation. In: Fujii, T. (eds) Ion/Molecule Attachment Reactions: Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7588-1_4

Download citation

Publish with us

Policies and ethics