Skip to main content

Does the Distribution and Variation in Cortical Bone Along Lower Limb Diaphyses Reflect Selection for Locomotor Economy?

  • Chapter
  • First Online:
Reconstructing Mobility

Abstract

It has been hypothesised that limb tapering reflects an energetic trade-off between bone strength and weight, and selection for tissue economy, resulting in lighter distal limb segments. If adaptive mechanisms constrain the response of osseous tissue to mechanical loading one might expect a higher level of constraint, and therefore less variability, in more distal aspects of the limb. High-resolution CT was used to quantify the distribution and variation in strength (Z p ), cortical area (CA) and shape (I max/I min) at 5 % intervals along the femoral and tibial diaphysis for a skeletal sample of mid- to late Holocene Native American agriculturalists and foragers (M = 21, F = 19). Z p and CA are highest in the proximal femur, decrease at a fairly consistent rate (Z p increases in the distal femur) and reach their lowest values at the distal tibia. By contrast, inherent morphological variability (coefficient of variation) for both Z p and CA are relatively constant along both the femur and tibia. The distribution and variation in I max/I min is greater than that of CA or Z p . These findings support earlier studies that have identified tapering in human limbs, yet, because morphological plasticity appears to be generally consistent across the diaphyses of the femur and tibia, morphological constraint (canalisation) does not seem to be the overriding mechanism dictating the tapering of limb bone structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (1998) Symmorphosis and safety factors. In: Weibel E, Taylor C, Bolis L (eds) Principles of animal design: the optimization and symmorphosis debate. Cambridge University, New York

    Google Scholar 

  • Boldsen J, Milner G, Konigsberg L, Wood J (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa R, Vaupel J (eds) Paleodemography: age distributions from skeletal samples. Cambridge University, Cambridge, pp 73–106

    Chapter  Google Scholar 

  • Brietburg E (1980) Vertebrate remains from 11SA87a. Center for Archaeological Investigations, Southern Illinois University, Carbondale

    Google Scholar 

  • Buck L, Stock JT, Foley R (2009) Levels of intraspecific variation within the Catarrhine skeleton. Int J Primatol 31(5):779–795

    Article  Google Scholar 

  • Buie H, Campbell G, Klinick R, MacNeil J, Boyd S (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515

    Article  PubMed  Google Scholar 

  • Doube M, Klosowski M, Agranda-Carreras I, Cordelieres F, Dougherty R, Jackson J, Schmid B, Hutchinson J, Shefelbine S (2010) BoneJ: free and extensible bone image analysis in Image J. Bone 47:1076–1079

    Article  PubMed Central  PubMed  Google Scholar 

  • Drapeau M, Streeter M (2006) Modeling and remodeling responses to normal loading in the human lower limb. Am J Phys Anthropol 129:403–409

    Article  PubMed  Google Scholar 

  • Enoka R (2008) Neuromechanics of human movement. Human Kinetics, Champaign

    Google Scholar 

  • Fukunaga T, Roy R, Shellock F, Hodgson J, Day M, Lee P (1992) Physiological cross-sectional area of human leg muscles based on magentic resonance imaging. J Orthop Res 10:926–934

    Article  Google Scholar 

  • Hallgrimsson B, Willmore K, Hall B (2002) Canalization, developmental stability, and morphological integration in primate limbs. Am J Phys Anthropol 45:131–158

    Article  Google Scholar 

  • Holt BM (2003) Mobility in upper paleolithic and mesolithic Europe: evidence from the lower limb. Am J Phys Anthropol 122(3):200–215

    Article  PubMed  Google Scholar 

  • Hseih Y, Robling A, Abmbrosius W, Burr B, Turner C (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 16(12):2291–2297

    Article  Google Scholar 

  • Isler K, Payne R, Gunther M, Thorpe S, Li Y, Savage R, Crompton A (2006) Inertial properties of hominoid limb segments. J Anat 209(2):201–218

    Article  PubMed Central  PubMed  Google Scholar 

  • Jefferies R, Butler B (1982) In: The Carrier Mills archaeological project, human adaptation in the Saline Valley, Illinois, vol II. Southern Illinois University at Carbondale Center for Archaeological Investigations

    Google Scholar 

  • Judex S, Gross T, Zernicke R (1997) Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Miner Res 12:1737–1745

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE (1992) Control of bone architecture by functional load bearing. J Bone Miner Res 7:S369–S375

    Article  PubMed  Google Scholar 

  • Lieberman DE, Crompton A (1998) Responses to stress: constraints on symmorphosis. In: Weibel E, Taylor C, Bolis L (eds) Principles of animal design: the optimization and symmorphosis debate. Cambridge University, Cambridge, pp 78–86

    Google Scholar 

  • Lieberman DE, Pearson OJ, Polk JD, Demes B, Crompton A (2003) Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J Exp Biol 206:3125–3138

    Article  PubMed  Google Scholar 

  • Lopinot N, Lynch M (1979) An empirical examination of Crab Orchard Settlement-subsistence in Southern Illinois. Center for Archaeological Investigations, Southern Illinois University, Carbondale

    Google Scholar 

  • Marchi D (2008) Relationships between lower limb cross-sectional geometry and mobility: the case of a Neolithic sample from Italy. Am J Phys Anthropol 137(2):188–200

    Article  PubMed  Google Scholar 

  • Milner G, Smith V (1990). Oneota human skeletal remains. In: Santure S, Harn A, Esarey D (eds) Archaeological Investigations at the Morton Village and Norris Farms 36 Cemetery. Reports of Investigations 45 Springfield, Illinois State Museum, pp 111–148

    Google Scholar 

  • Pearson OM, Lieberman DE (2004) The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Yearbook of Phys Anthropol 47:63–99

    Google Scholar 

  • Raichlen D (2006) Effect of limb mass distribution on mechanical power outputs during quadrupedalism. J Exp Biol 209:633–644

    Article  PubMed  Google Scholar 

  • Rubin C, McLeod K, Basin S (1990) Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity. J Biomech 23(Suppl 1):43–54

    Article  PubMed  Google Scholar 

  • Ruff C (2008a) Biomechanical analyses of archaeological human skeletons. In: Katzenberg M, Saunders A (eds) Biological anthropology of the human skeleton. Wiley, Hoboken, pp 183–206

    Chapter  Google Scholar 

  • Ruff C (2008b) Femoral/humeral strength in early African Homo erectus. J Hum Evol 54:383–390

    Article  PubMed  Google Scholar 

  • Ruff C (2009) Relative limb strength and locomotion in Homo habilis. Am J Phys Anthropol 138:90–100

    Article  PubMed  Google Scholar 

  • Ruff CB (2000) Body size, body shape and long bone strength in modern humans. J Hum Evol 38:269–290

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Hayes WC (1983a) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: I. Method and general patterns of variation. Am J Phys Anthropol 60:359–381

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Hayes WC (1983b) Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation: II. Sex, age, and side differences. Am J Phys Anthropol 60:383–400

    Article  CAS  PubMed  Google Scholar 

  • Ruff CB, Holt BM, Trinkaus E (2006) Who’s afraid of the big bad Wolff? “Wolff’s Law” and bone functional adaptation. Am J Phys Anthropol 129(4):484–498

    Article  PubMed  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in Homo. I: temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Article  CAS  PubMed  Google Scholar 

  • Santure S, Harn A, Esarey D (1990) Archaeological investigations at the Morton Village and Norris Farms 36 Cemetery. Illinois State Museum, Springfield

    Google Scholar 

  • Schantz P, Randall-Fox E, Hutchison W, Tyden A, Astrand P (1983) Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand 117(2):219–226

    Article  CAS  PubMed  Google Scholar 

  • Shackelford L (2007) Regional variation in the postcranial robusticity of late upper Palaeolithic humans. Am J Phys Anthropol 133(1):655–668

    Article  PubMed  Google Scholar 

  • Shaw C, Stock J (2009a) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol 140(1):160–172

    Article  PubMed  Google Scholar 

  • Shaw C, Stock J (2009b) Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am J Phys Anthropol 140:149–159

    Article  PubMed  Google Scholar 

  • Simpson G, Roe A, Lewontin R (1960) Measures of dispersion and variability. Quantitative zoology. Harcourt Brace, New York

    Google Scholar 

  • Skedros J, Sybrowsky C, Parry T, Bloebaum R (2003) Regional differences in cortical bone organisation and micro-damage prevalence in Rocky Mountain mule deer. Anat Rec 274A:837–850

    Article  Google Scholar 

  • Sparacello V, Marchi D (2008) Mobility and subsistence economy: a diachronic comparison between two groups settled in the same geographic area (Liguria, Italy). Am J Phys Anthropol 136(4):485–495

    Google Scholar 

  • Stock J (2006) Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol 131:194–204

    Article  CAS  PubMed  Google Scholar 

  • Stock J, Pfeiffer S (2001) Linking structural variability in long bone diaphyses to habitual behaviors: foragers from the southern African Later Stone Age and the Andaman Islands. Am J Phys Anthropol 115:337–348

    Article  CAS  PubMed  Google Scholar 

  • Stock JT, Pfeiffer S (2004) Long bone robusticity and subsistence behavior among Later Stone Age foragers of the forest and fynbos biomes of South Africa. J Archaeol Sci 31:999–1013

    Article  Google Scholar 

  • Trinkaus E (1997) Appendicular robusticity and the paleobiology of modern human emergence. Proc Natl Acad Science 94:13367–13373

    Article  CAS  Google Scholar 

  • Trinkaus E, Ruff C (2012) Femoral and tibial diaphyseal cross-sectional geometry in Pleistocene Homo. Paleoanthropology 2012:13–62

    Google Scholar 

  • Wescott DJ (2014) The relationship between femur shape and terrestrial mobility patterns. In: Carlson KJ, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York

    Google Scholar 

Download references

Acknowledgements

Grant Sponsorship: National Science Foundation BCS-0617097 and OISE-1158603 (TMR), Cushing Anthropological Research Fund (CNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin N. Shaw Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaw, C.N., Stock, J.T., Davies, T.G., Ryan, T.M. (2014). Does the Distribution and Variation in Cortical Bone Along Lower Limb Diaphyses Reflect Selection for Locomotor Economy?. In: Carlson, K., Marchi, D. (eds) Reconstructing Mobility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7460-0_4

Download citation

Publish with us

Policies and ethics