Skip to main content

Flaviviruses: Dengue

  • Chapter
  • First Online:
Viral Infections of Humans

Abstract

Dengue is the world’s most important human arboviral disease with indigenous and endemic transmission in more than 100 tropical and subtropical countries. There are numerous other locales that experience non-sustained epidemic transmission with cases in returning travelers or military personnel. More than half the population of the world is at risk of being infected with a dengue virus (DENV). Despite its importance dengue is under-recognized and underreported with current literature estimating 400 million infections each year with 100 million being clinically apparent. The human, community, country, and regional cost of dengue in terms of mortality, morbidity, and health care resource utilization is significant and growing in scope. There are numerous factors that are believed to contribute to the increase in dengue burden, which include (1) rising number of susceptible hosts (population growth), (2) expanding Aedes mosquito vector populations (ineffective vector control, increasing breeding sites, changing ecology), (3) increasing DENV distribution (travel), and (4) the convergence of the these three: urbanization, poverty, and decaying infrastructure

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leder K, Torresi J, Brownstein JS, et al. Travel-associated illness trends and clusters, 2000–2010. Emerg Infect Dis. 2013;19:1049–73.

    PubMed  PubMed Central  Google Scholar 

  2. Gibbons RV, Streitz M, Babina T, Fried JR. Dengue and US military operations from the Spanish-American War through today. Emerg Infect Dis. 2012;18:623–30.

    PubMed  PubMed Central  Google Scholar 

  3. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Gubler DJ. The economic burden of dengue. Am J Trop Med Hyg. 2012;86:743–4.

    PubMed  PubMed Central  Google Scholar 

  5. Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg. 2011;84:200–7.

    PubMed  PubMed Central  Google Scholar 

  6. Massad E, Coutinho FA. The cost of dengue control. Lancet. 2011;377:1630–1.

    PubMed  Google Scholar 

  7. Beatty ME, Beutels P, Meltzer MI, et al. Health economics of dengue: a systematic literature review and expert panel’s assessment. Am J Trop Med Hyg. 2011;84:473–88.

    PubMed  PubMed Central  Google Scholar 

  8. Tapia-Conyer R, Mendez-Galvan JF, Gallardo-Rincon H. The growing burden of dengue in Latin America. J Clin Virol. 2009;46 Suppl 2:S3–6.

    PubMed  Google Scholar 

  9. Suaya JA, Shepard DS, Siqueira JB, et al. Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg. 2009;80:846–55.

    PubMed  Google Scholar 

  10. Thai KT, Anders KL. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med (Maywood). 2011;236:944–54.

    CAS  Google Scholar 

  11. Wilder-Smith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. Med Clin North Am. 2008;92:1377–90, x.

    Google Scholar 

  12. Yang GJ, Utzinger J, Zhou XN. Interplay between environment, agriculture and infectious diseases of poverty: case studies in China. Acta Trop. 2013 pii: S0001-706X(13)00189-7. doi: 10.1016/j.actatropica.2013.07.009. [Epub ahead of print].

  13. World Health Organization. Dengue haemorrhagic fever: diagnosis, treatment, prevention and control. Geneva: World Health Organization; 1991.

    Google Scholar 

  14. Tsai CY, Lee IK, Lee CH, Yang KD, Liu JW. Comparisons of dengue illness classified based on the 1997 and 2009 World Health Organization dengue classification Schemes. J Microbiol Immunol Infect. 2013;46:271–81.

    PubMed  Google Scholar 

  15. Thein TL, Gan VC, Lye DC, Yung CF, Leo YS. Utilities and limitations of the World Health Organization 2009 warning signs for adult dengue severity. PLoS Negl Trop Dis. 2013;7:e2023.

    PubMed  PubMed Central  Google Scholar 

  16. Tsai CY, Lee IK, Lee CH, Yang KD, Liu JW. Comparisons of dengue illness classified based on the 1997 and 2009 World Health Organization dengue classification schemes. J Microbiol Immunol Infect. 2012;46:271–81.

    PubMed  Google Scholar 

  17. Narvaez F, Gutierrez G, Perez MA, et al. Evaluation of the traditional and revised WHO classifications of Dengue disease severity. PLoS Negl Trop Dis. 2011;5:e1397.

    PubMed  PubMed Central  Google Scholar 

  18. World Health Organization. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009.

    Google Scholar 

  19. Moraes GH, de Fatima DE, Duarte EC. Determinants of mortality from severe dengue in Brazil: a population-based case-control study. Am J Trop Med Hyg. 2013;88:670–6.

    PubMed  Google Scholar 

  20. Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol. 2013;158:1445–59.

    PubMed  CAS  Google Scholar 

  21. Monteiro SP, Brasil PE, Cabello GM, et al. HLA-A*01 allele: a risk factor for dengue haemorrhagic fever in Brazil’s population. Mem Inst Oswaldo Cruz. 2012;107:224–30.

    PubMed  CAS  Google Scholar 

  22. Stephens HA. HLA and other gene associations with dengue disease severity. Curr Top Microbiol Immunol. 2010;338:99–114.

    PubMed  CAS  Google Scholar 

  23. Machain-Williams C, Mammen Jr MP, Zeidner NS, et al. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol. 2012;34:15–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Hughes H, Britton NF. Modelling the use of Wolbachia to control dengue fever transmission. Bull Math Biol. 2013;75:796–818.

    PubMed  Google Scholar 

  25. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989.

    PubMed  PubMed Central  Google Scholar 

  26. Nguyen NM, Tran CN, Phung LK, et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis. 2013;207:1442–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Whitehorn J, Van Vinh Chau N, Truong NT, et al. Lovastatin for adult patients with dengue: protocol for a randomised controlled trial. Trials. 2012;13:203.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Simmons CP, Wolbers M, Nguyen MN, et al. Therapeutics for dengue: recommendations for design and conduct of early-phase clinical trials. PLoS Negl Trop Dis. 2012;6:e1752.

    PubMed  PubMed Central  Google Scholar 

  29. Thomas SJ. The necessity and quandaries of dengue vaccine development. J Infect Dis. 2011;203:299–303.

    PubMed  PubMed Central  Google Scholar 

  30. Thomas SJ, Endy TP. Critical issues in dengue vaccine development. Curr Opin Infect Dis. 2011;24:442–50.

    PubMed  CAS  Google Scholar 

  31. Thomas SJ, Endy TP. Vaccines for the prevention of dengue: development update. Hum Vaccin. 2011;7:674–84.

    PubMed  CAS  Google Scholar 

  32. Thomas SJ, Endy TP. Current issues in dengue vaccination. Curr Opin Infect Dis. 2013;26(5):429–34.

    PubMed  CAS  Google Scholar 

  33. Carey DE, Causey OR, Reddy S, Cooke AR. Dengue viruses from febrile patients in Nigeria, 1964–68. Lancet. 1971;1:105–6.

    PubMed  CAS  Google Scholar 

  34. Pepper OHP. A note on David Bylon and dengue. Ann Med His. 1941;3:363–8.

    Google Scholar 

  35. Hirsch A. Handbook of geographical and historical pathology. London: New Sydenham Society; 1883.

    Google Scholar 

  36. Rush B. An account of the bilious remitting fever, as it appeared in Philadelphia, in the summer and autumn of the year 1780. In: Rush B, editor. Medical inquires and observations. 1st ed. Philadelphia: Prichard and Hall; 1789. p. 89–100.

    Google Scholar 

  37. Christie J. Remarks on “Kidinga Pepo”: a peculiar form of exanthematous disease. Br Med J. 1872;1:577–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Simpson J, Weiner E. Entries for dandy, dengue. 2nd ed. Oxford: Clarendon Press; 1989.

    Google Scholar 

  39. Rigau-Perez JG, Ayala-Lopez A, Garcia-Rivera EJ, et al. The reappearance of dengue-3 and a subsequent dengue-4 and dengue-1 epidemic in Puerto Rico in 1998. Am J Trop Med Hyg. 2002;67:355–62.

    PubMed  Google Scholar 

  40. Ashburn PM, Craig CF. Experimental investigations regarding the etiology of dengue fever. 1907. J Infect Dis. 2004;189:1747–83. discussion 4–6.

    PubMed  CAS  Google Scholar 

  41. Graham H. Dengue: a study of its mode of propagation and pathology. Med Rec N Y. 1902;61:204–7.

    Google Scholar 

  42. Reed W, Carroll J. The prevention of yellow fever. Public Health Pap Rep. 1901;27:113–29.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Sabin AB. Research on dengue during World War II. Am J Trop Med Hyg. 1952;1:30–50.

    PubMed  CAS  Google Scholar 

  44. Siler JF, Hall MW, Hitchens AP. Dengue: its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention. Philipp J Sci. 1926;29:1–304.

    Google Scholar 

  45. Hotta S. Experimental studies on dengue. I. Isolation, identification and modification of the virus. J Infect Dis. 1952;90:1–9.

    PubMed  CAS  Google Scholar 

  46. Simmons JS, St John JH, Reynolds FHK. Experimental studies of dengue. Philipp J Sci. 1931;44:1–252.

    Google Scholar 

  47. Hammon WM, Sather GE. Virological findings in the 1960 hemorrhagic fever epidemic (dengue) in Thailand. Am J Trop Med Hyg. 1964;13:629–41.

    PubMed  CAS  Google Scholar 

  48. Hare FE. The 1897 epidemic of dengue in North Queensland. Aust Med Gaz. 1898;17:98–107.

    Google Scholar 

  49. Theiler M, Casals J, Moutousses C. Etiology of t e 1927–28 epidemic of dengue in Greece. Proc Soc Exp Biol Med. 1960;103:244–6.

    PubMed  CAS  Google Scholar 

  50. Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev. 1990;3:376–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Papaevangelou G, Halstead SB. Infections with two dengue viruses in Greece in the 20th century. Did dengue hemorrhagic fever occur in the 1928 epidemic? J Trop Med Hyg. 1977;80:46–51.

    PubMed  CAS  Google Scholar 

  52. Hammon WM, Rudnick A, Sather GE. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science. 1960;131:1102–3.

    PubMed  CAS  Google Scholar 

  53. Halstead SB, Yamarat C, Scanlon JE. The Thai hemorrhagic fever epidemic of 1962 (A preliminary report). J Med Assoc Thai. 1963;46:449–62.

    Google Scholar 

  54. Brathwaite Dick O, San Martin JL, Montoya RH, del Diego J, Zambrano B, Dayan GH. The history of dengue outbreaks in the Americas. Am J Trop Med Hyg. 2012;87:584–93.

    PubMed  PubMed Central  Google Scholar 

  55. Amarasinghe A, Letson GW. Dengue in the Middle East: a neglected, emerging disease of importance. Trans R Soc Trop Med Hyg. 2012;106:1–2.

    PubMed  Google Scholar 

  56. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17:1349–54.

    PubMed  PubMed Central  Google Scholar 

  57. Gaunt MW, Sall AA, de Lamballerie X, Falconar AK, Dzhivanian TI, Gould EA. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol. 2001;82:1867–76.

    PubMed  CAS  Google Scholar 

  58. Wang E, Ni H, Xu R, et al. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol. 2000;74:3227–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol. 2003;3:19–28.

    PubMed  Google Scholar 

  60. Twiddy SS, Holmes EC, Rambaut A. Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol. 2003;20:122–9.

    PubMed  CAS  Google Scholar 

  61. Halstead SB, Nimmannitya S, Yamarat C, Russell PK. Hemorrhagic fever in Thailand; recent knowledge regarding etiology. Jpn J Med Sci Biol. 1967;20(Suppl):96–103.

    PubMed  Google Scholar 

  62. Kochel TJ, Watts DM, Halstead SB, et al. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet. 2002;360:310–2.

    PubMed  CAS  Google Scholar 

  63. Twiddy SS, Pybus OG, Holmes EC. Comparative population dynamics of mosquito-borne flaviviruses. Infect Genet Evol. 2003;3:87–95.

    PubMed  Google Scholar 

  64. Jarman RG, Holmes EC, Rodpradit P, et al. Microevolution of Dengue viruses circulating among primary school children in Kamphaeng Phet, Thailand. J Virol. 2008;82:5494–500.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Tang Y, Rodpradit P, Chinnawirotpisan P, et al. Comparative analysis of full-length genomic sequences of 10 dengue serotype 1 viruses associated with different genotypes, epidemics, and disease severity isolated in Thailand over 22 years. Am J Trop Med Hyg. 2010;83:1156–65.

    PubMed  PubMed Central  Google Scholar 

  66. Zhang C, Mammen Jr MP, Chinnawirotpisan P, et al. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J Virol. 2005;79:15123–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Zhang C, Mammen Jr MP, Chinnawirotpisan P, et al. Structure and age of genetic diversity of dengue virus type 2 in Thailand. J Gen Virol. 2006;87:873–83.

    PubMed  CAS  Google Scholar 

  68. Holmes EC. The evolutionary biology of dengue virus. Novartis Found Symp. 2006;277:177–87; discussion 87–92, 251–3.

    PubMed  CAS  Google Scholar 

  69. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.

    PubMed  CAS  Google Scholar 

  70. Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11:369–77.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Zhang W, Chipman PR, Corver J, et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol. 2003;10:907–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Chavez JH, Silva JR, Amarilla AA, Moraes Figueiredo LT. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals. 2010;38:613–8.

    PubMed  CAS  Google Scholar 

  73. Matsui K, Gromowski GD, Li L, Barrett AD. Characterization of a dengue type-specific epitope on dengue 3 virus envelope protein domain III. J Gen Virol. 2010;91:2249–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Modis Y, Ogata S, Clements D, Harrison SC. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol. 2005;79:1223–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Kuhn RJ, Zhang W, Rossmann MG, et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108:717–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol. 2010;84:9760–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Rodriguez-Madoz JR, Bernal-Rubio D, Kaminski D, Boyd K, Fernandez-Sesma A. Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol. 2010;84:4845–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol. 2009;83:5408–18.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Ubol S, Phuklia W, Kalayanarooj S, Modhiran N. Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. J Infect Dis. 2010;201:923–35.

    PubMed  CAS  Google Scholar 

  80. Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11:532–43.

    PubMed  CAS  Google Scholar 

  81. Dengue: guidelines for diagnosis, treatment, prevention and control: new edition. A joint publication of the World Health Organization (WHO) and the Special Programme for Research and Training in Tropical Diseases (TDR). Geneva: WHO Press, World Health Organization; 2009. (NLM classification: WC 528WHO/HTM/NTD/DEN/2009.1 Expiry date: 2014. ISBN 978 92 4 154787 1.

    Google Scholar 

  82. Endy TP, Yoon IK, Mammen MP. Prospective cohort studies of dengue viral transmission and severity of disease. Curr Top Microbiol Immunol. 2010;338:1–13.

    PubMed  CAS  Google Scholar 

  83. Wichmann O, Yoon IK, Vong S, et al. Dengue in Thailand and Cambodia: an assessment of the degree of underrecognized disease burden based on reported cases. PLoS Negl Trop Dis. 2011;5:e996.

    PubMed  PubMed Central  Google Scholar 

  84. Undurraga EA, Halasa YA, Shepard DS. Use of expansion factors to estimate the burden of dengue in Southeast Asia: a systematic analysis. PLoS Negl Trop Dis. 2013;7:e2056.

    PubMed  PubMed Central  Google Scholar 

  85. Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7:e2055.

    PubMed  PubMed Central  Google Scholar 

  86. Shepard DS, Undurraga EA, Lees RS, Halasa Y, Lum LC, Ng CW. Use of multiple data sources to estimate the economic cost of dengue illness in Malaysia. Am J Trop Med Hyg. 2012;87:796–805.

    PubMed  PubMed Central  Google Scholar 

  87. Standish K, Kuan G, Aviles W, Balmaseda A, Harris E. High dengue case capture rate in four years of a cohort study in Nicaragua compared to national surveillance data. PLoS Negl Trop Dis. 2010;4:e633.

    PubMed  PubMed Central  Google Scholar 

  88. Endy TP, Nisalak A, Chunsuttiwat S, et al. Spatial and temporal circulation of dengue virus serotypes: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol. 2002;156:52–9.

    PubMed  Google Scholar 

  89. Burke DS, Nisalak A, Gentry MK. Detection of flavivirus antibodies in human serum by epitope-blocking immunoassay. J Med Virol. 1987;23:165–73.

    PubMed  CAS  Google Scholar 

  90. Sangkawibha N, Rojanasuphot S, Ahandrik S, et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol. 1984;120:653–69.

    PubMed  CAS  Google Scholar 

  91. Burke DS, Nisalak A, Johnson DE, Scott RM. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg. 1988;38:172–80.

    PubMed  CAS  Google Scholar 

  92. Stanley WM. Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science. 1935;81:644–5.

    PubMed  CAS  Google Scholar 

  93. Weller TH, Robbins FC, Enders JF. Cultivation of poliomyelitis virus in cultures of human foreskin and embryonic tissues. Proc Soc Exp Biol Med. 1949;72:153–5.

    PubMed  CAS  Google Scholar 

  94. Enders JF, Weller TH, Robbins FC. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science. 1949;109:85–7.

    PubMed  CAS  Google Scholar 

  95. Kuno G, Gubler DJ, Velez M, Oliver A. Comparative sensitivity of three mosquito cell lines for isolation of dengue viruses. Bull World Health Organ. 1985;63:279–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Medina F, Medina JF, Colon C, Vergne E, Santiago GA, Munoz-Jordan JL. Dengue virus: isolation, propagation, quantification, and storage. Curr Protoc Microbiol. 2012;Chapter 15:Unit 15D 2.

    Google Scholar 

  97. Henchal EA, Narupiti S, Feighny R, Padmanabhan R, Vakharia V. Detection of dengue virus RNA using nucleic acid hybridization. J Virol Methods. 1987;15:187–200.

    PubMed  CAS  Google Scholar 

  98. Henchal EA, Polo SL, Vorndam V, Yaemsiri C, Innis BL, Hoke CH. Sensitivity and specificity of a universal primer set for the rapid diagnosis of dengue virus infections by polymerase chain reaction and nucleic acid hybridization. Am J Trop Med Hyg. 1991;45:418–28.

    PubMed  CAS  Google Scholar 

  99. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:545–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Houng HH, Hritz D, Kanesa-thasan N. Quantitative detection of dengue 2 virus using fluorogenic RT-PCR based on 3’-noncoding sequence. J Virol Methods. 2000;86:1–11.

    PubMed  CAS  Google Scholar 

  101. Francis Jr T. On the doctrine of original antigenic sin. Proc Am Philos Soc. 1960;104:572–8.

    Google Scholar 

  102. Halstead SB, Rojanasuphot S, Sangkawibha N. Original antigenic sin in dengue. Am J Trop Med Hyg. 1983;32:154–6.

    PubMed  CAS  Google Scholar 

  103. Russell PK, Nisalak A, Sukhavachana P, Vivona S. A plaque reduction test for dengue virus neutralizing antibodies. J Immunol. 1967;99:285–90.

    PubMed  CAS  Google Scholar 

  104. Jirakanjanakit N, Sanohsomneing T, Yoksan S, Bhamarapravati N. The micro-focus reduction neutralization test for determining dengue and Japanese encephalitis neutralizing antibodies in volunteers vaccinated against dengue. Trans R Soc Trop Med Hyg. 1997;91:614–7.

    PubMed  CAS  Google Scholar 

  105. Thomas SJ, Nisalak A, Anderson KB, et al. Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: How alterations in assay conditions impact performance. Am J Trop Med Hyg. 2009;81:825–33.

    PubMed  PubMed Central  Google Scholar 

  106. Hirst GK. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J Exp Med. 1942;75:49–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Innis BL, Nisalak A, Nimmannitya S, et al. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg. 1989;40:418–27.

    PubMed  CAS  Google Scholar 

  108. Hang VT, Nguyet NM, Trung DT, et al. Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity, specificity and relationship to viraemia and antibody responses. PLoS Negl Trop Dis. 2009;3:e360.

    PubMed  Google Scholar 

  109. Chaterji S, Allen Jr JC, Chow A, Leo YS, Ooi EE. Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults. Am J Trop Med Hyg. 2011;84:224–8.

    PubMed  PubMed Central  Google Scholar 

  110. Blacksell SD. Commercial dengue rapid diagnostic tests for point-of-care application: recent evaluations and future needs? J Biomed Biotechnol. 2012;2012:151967.

    PubMed  PubMed Central  Google Scholar 

  111. Peeling RW, Artsob H, Pelegrino JL, et al. Evaluation of diagnostic tests: dengue. Nat Rev Microbiol. 2010;8:S30–8.

    PubMed  CAS  Google Scholar 

  112. Nimmannitya S, Halstead SB, Cohen S, Margiotta MR. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. I. Observations on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg. 1969;18:954–71.

    PubMed  CAS  Google Scholar 

  113. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–81.

    PubMed  CAS  Google Scholar 

  114. Kliks SC, Nimmannitya S, Nisalak A, Burke DS. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg. 1988;38:411–9.

    PubMed  CAS  Google Scholar 

  115. Endy TP, Chunsuttiwat S, Nisalak A, et al. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol. 2002;156:40–51.

    PubMed  Google Scholar 

  116. Endy TP, Nisalak A, Chunsuttitwat S, et al. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis. 2004;189:990–1000.

    PubMed  Google Scholar 

  117. Anderson KB, Chunsuttiwat S, Nisalak A, et al. Burden of symptomatic dengue infection in children at primary school in Thailand: a prospective study. Lancet. 2007;369:1452–9.

    PubMed  Google Scholar 

  118. Nisalak A, Endy TP, Nimmannitya S, et al. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg. 2003;68:191–202.

    PubMed  Google Scholar 

  119. Mammen MP, Pimgate C, Koenraadt CJ, et al. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med. 2008;5:e205.

    PubMed  PubMed Central  Google Scholar 

  120. Yoon IK, Getis A, Aldstadt J, et al. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis. 2012;6:e1730.

    PubMed  PubMed Central  Google Scholar 

  121. Salje H, Lessler J, Endy TP, et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc Natl Acad Sci U S A. 2012;109:9535–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Harrington LC, Scott TW, Lerdthusnee K, et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg. 2005;72:209–20.

    PubMed  Google Scholar 

  123. Cummings DA, Irizarry RA, Huang NE, et al. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature. 2004;427:344–7.

    PubMed  CAS  Google Scholar 

  124. Watanaveeradej V, Endy TP, Samakoses R, et al. Transplacentally transferred maternal-infant antibodies to dengue virus. Am J Trop Med Hyg. 2003;69:123–8.

    PubMed  Google Scholar 

  125. Fried JR, Gibbons RV, Kalayanarooj S, et al. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis. 2010;4:e617.

    PubMed  PubMed Central  Google Scholar 

  126. Harris E, Videa E, Perez L, et al. Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua. Am J Trop Med Hyg. 2000;63:5–11.

    PubMed  CAS  Google Scholar 

  127. Cummings DA, Iamsirithaworn S, Lessler JT, et al. The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med. 2009;6:e1000139.

    PubMed  PubMed Central  Google Scholar 

  128. The global burden of disease 2004 update. Geneva: WHO Press, World Health Organization; 2004. (NLM classification: W 74). ISBN 978 92 4 156371 0. The world health report 2003. Annex Table 3: burden of disease in DALYs by cause, sex and mortality stratum in WHO Regions, estimates for 2002

    Google Scholar 

  129. Innis BL, Eckels KH. Progress in development of a live-attenuated, tetravalent dengue virus vaccine by the United States Army Medical Research and Materiel Command. Am J Trop Med Hyg. 2003;69:1–4.

    PubMed  Google Scholar 

  130. Endy TP, Thomas SJ, Lawler JV. History of U.S. military contributions to the study of viral hemorrhagic fevers. Mil Med. 2005;170:77–91.

    PubMed  Google Scholar 

  131. Trofa AF, DeFraites RF, Smoak BL, et al. Dengue fever in US military personnel in Haiti. JAMA. 1997;277:1546–8.

    PubMed  CAS  Google Scholar 

  132. Mohammed HP, Ramos MM, Rivera A, et al. Travel-associated dengue infections in the United States, 1996 to 2005. J Travel Med. 2010;17:8–14.

    PubMed  Google Scholar 

  133. Schwartz E, Weld LH, Wilder-Smith A, et al. Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997–2006. Emerg Infect Dis. 2008;14:1081–8.

    PubMed  PubMed Central  Google Scholar 

  134. Kittigul L, Pitakarnjanakul P, Sujirarat D, Siripanichgon K. The differences of clinical manifestations and laboratory findings in children and adults with dengue virus infection. J Clin Virol. 2007;39:76–81.

    PubMed  Google Scholar 

  135. Wang CC, Lee IK, Su MC, et al. Differences in clinical and laboratory characteristics and disease severity between children and adults with dengue virus infection in Taiwan, 2002. Trans R Soc Trop Med Hyg. 2009;103:871–7.

    PubMed  CAS  Google Scholar 

  136. Lee IK, Liu JW, Yang KD. Fatal dengue hemorrhagic fever in adults: emphasizing the evolutionary pre-fatal clinical and laboratory manifestations. PLoS Negl Trop Dis. 2012;6:e1532.

    PubMed  PubMed Central  Google Scholar 

  137. Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4:e646.

    PubMed  PubMed Central  Google Scholar 

  138. Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol. 2009;9:523–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol. 2011;9:532–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007;7:9.

    PubMed  PubMed Central  Google Scholar 

  141. Chan M, Johansson MA. The incubation periods of Dengue viruses. PLoS One. 2012;7:e50972.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Wu SJ, Grouard-Vogel G, Sun W, et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med. 2000;6:816–20.

    PubMed  CAS  Google Scholar 

  143. Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol. 2012;86:7637–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Marchette NJ, Halstead SB. Survival of Dengue virus in post mortem samples of tissues from experimentally infected Rhesus monkeys. Am J Trop Med Hyg. 1973;22:242–3.

    PubMed  CAS  Google Scholar 

  145. Omatsu T, Moi ML, Hirayama T, et al. Common marmoset (Callithrix jacchus) as a primate model of dengue virus infection: development of high levels of viraemia and demonstration of protective immunity. J Gen Virol. 2011;92:2272–80.

    PubMed  CAS  Google Scholar 

  146. Vaughn DW, Green S, Kalayanarooj S, et al. Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis. 1997;176:322–30.

    PubMed  CAS  Google Scholar 

  147. Vaughn DW, Green S, Kalayanarooj S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181:2–9.

    PubMed  CAS  Google Scholar 

  148. Marovich M, Grouard-Vogel G, Louder M, et al. Human dendritic cells as targets of dengue virus infection. J Investig Dermatol Symp Proc. 2001;6:219–24.

    PubMed  CAS  Google Scholar 

  149. Srikiatkhachorn A, Wichit S, Gibbons RV, et al. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status. PLoS One. 2012;7:e51335.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. de Macedo FC, Nicol AF, Cooper LD, Yearsley M, Pires AR, Nuovo GJ. Histologic, viral, and molecular correlates of dengue fever infection of the liver using highly sensitive immunohistochemistry. Diagn Mol Pathol. 2006;15:223–8.

    PubMed  Google Scholar 

  151. Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis. 2004;189:1411–8.

    PubMed  Google Scholar 

  152. Nightingale ZD, Patkar C, Rothman AL. Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus. J Leukoc Biol. 2008;84:1028–38.

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Wang T, Gao Y, Scully E, et al. Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. J Immunol. 2006;177:1825–32.

    PubMed  CAS  Google Scholar 

  154. Libraty DH, Endy TP, Houng HS, et al. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis. 2002;185:1213–21.

    PubMed  Google Scholar 

  155. Munoz-Jordan JL. Subversion of interferon by dengue virus. Curr Top Microbiol Immunol. 2010;338:35–44.

    PubMed  CAS  Google Scholar 

  156. Shresta S, Kyle JL, Robert Beatty P, Harris E. Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology. 2004;319:262–73.

    PubMed  CAS  Google Scholar 

  157. Green S, Vaughn DW, Kalayanarooj S, et al. Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J Med Virol. 1999;59:329–34.

    PubMed  CAS  Google Scholar 

  158. Srikiatkhachorn A, Gibbons RV, Green S, et al. Dengue hemorrhagic fever: the sensitivity and specificity of the World Health Organization definition for identification of severe cases of dengue in Thailand, 1994–2005. Clin Infect Dis. 2010;50:1135–43.

    PubMed  PubMed Central  Google Scholar 

  159. Green S, Vaughn DW, Kalayanarooj S, et al. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis. 1999;179:755–62.

    PubMed  CAS  Google Scholar 

  160. Wrammert J, Onlamoon N, Akondy RS, et al. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J Virol. 2012;86:2911–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Potts JA, Rothman AL. Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Trop Med Int Health. 2008;13:1328–40.

    PubMed  PubMed Central  Google Scholar 

  162. Bhamarapravati N, Tuchinda P, Boonyapaknavik V. Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Ann Trop Med Parasitol. 1967;61:500–10.

    PubMed  CAS  Google Scholar 

  163. Noisakran S, Onlamoon N, Hsiao HM, et al. Infection of bone marrow cells by dengue virus in vivo. Exp Hematol. 2012;40:250–9 e4.

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Sosothikul D, Seksarn P, Pongsewalak S, Thisyakorn U, Lusher J. Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Thromb Haemost. 2007;97:627–34.

    PubMed  CAS  Google Scholar 

  165. Isarangkura P, Tuchinda S. The behavior of transfused platelets in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health. 1993;24 Suppl 1:222–4.

    PubMed  Google Scholar 

  166. Falconar AK. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol. 1997;142:897–916.

    PubMed  CAS  Google Scholar 

  167. Thein S, Aung MM, Shwe TN, et al. Risk factors in dengue shock syndrome. Am J Trop Med Hyg. 1997;56:566–72.

    PubMed  CAS  Google Scholar 

  168. Watts DM, Porter KR, Putvatana P, et al. Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet. 1999;354:1431–4.

    PubMed  CAS  Google Scholar 

  169. Brown MG, Hermann LL, Issekutz AC, et al. Dengue virus infection of mast cells triggers endothelial cell activation. J Virol. 2011;85:1145–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Mangada MM, Rothman AL. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol. 2005;175:2676–83.

    PubMed  CAS  Google Scholar 

  171. Bashyam HS, Green S, Rothman AL. Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J Immunol. 2006;176:2817–24.

    PubMed  CAS  Google Scholar 

  172. Beltramello M, Williams KL, Simmons CP, et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 2010;8:271–83.

    PubMed  CAS  Google Scholar 

  173. Friberg H, Bashyam H, Toyosaki-Maeda T, et al. Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci Rep. 2011;1:51.

    PubMed  PubMed Central  Google Scholar 

  174. Wahala WM, Silva AM. The human antibody response to dengue virus infection. Viruses. 2011;3:2374–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  175. Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis. 1994;19: 500–12.

    PubMed  CAS  Google Scholar 

  176. Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis. 2010;10:712–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Kaufman BM, Summers PL, Dubois DR, et al. Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. Am J Trop Med Hyg. 1989;41:576–80.

    PubMed  CAS  Google Scholar 

  178. Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science. 2010;328:745–8.

    PubMed  CAS  Google Scholar 

  179. Muller DA, Young PR. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res. 2013;98:192–208.

    PubMed  CAS  Google Scholar 

  180. Libraty DH, Young PR, Pickering D, et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis. 2002;186:1165–8.

    PubMed  CAS  Google Scholar 

  181. Avirutnan P, Punyadee N, Noisakran S, et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis. 2006;193:1078–88.

    PubMed  CAS  Google Scholar 

  182. Schlesinger JJ, Brandriss MW, Walsh EE. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol. 1987;68(Pt 3):853–7.

    PubMed  CAS  Google Scholar 

  183. Avirutnan P, Zhang L, Punyadee N, et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog. 2007;3:e183.

    PubMed  PubMed Central  Google Scholar 

  184. Vaughan K, Greenbaum J, Blythe M, Peters B, Sette A. Meta-analysis of all immune epitope data in the Flavivirus genus: inventory of current immune epitope data status in the context of virus immunity and immunopathology. Viral Immunol. 2010;23:259–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Duangchinda T, Dejnirattisai W, Vasanawathana S, et al. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc Natl Acad Sci U S A. 2010;107:16922–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  186. Weiskopf D, Angelo MA, de Azeredo EL, et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc Natl Acad Sci U S A. 2013;110:E2046–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Kurane I, Innis BL, Nisalak A, et al. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. J Clin Invest. 1989;83:506–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  188. Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol. 1999;73:3623–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Zivny J, DeFronzo M, Jarry W, et al. Partial agonist effect influences the CTL response to a heterologous dengue virus serotype. J Immunol. 1999;163:2754–60.

    PubMed  CAS  Google Scholar 

  190. Friberg H, Burns L, Woda M, et al. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol Cell Biol. 2011;89:122–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Mathew A, West K, Kalayanarooj S, et al. B-cell responses during primary and secondary dengue virus infections in humans. J Infect Dis. 2011;204:1514–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Puschnik A, Lau L, Cromwell EA, Balmaseda A, Zompi S, Harris E. Correlation between dengue-specific neutralizing antibodies and serum avidity in primary and secondary dengue virus 3 natural infections in humans. PLoS Negl Trop Dis. 2013;7:e2274.

    PubMed  PubMed Central  Google Scholar 

  193. Sukupolvi-Petty S, Austin SK, Engle M, et al. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol. 2010;84:9227–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Hatch S, Endy TP, Thomas S, et al. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J Infect Dis. 2011;203:1282–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  195. Halstead SB. Observations related to pathogensis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J Biol Med. 1970;42:350–62.

    PubMed  CAS  PubMed Central  Google Scholar 

  196. Laoprasopwattana K, Libraty DH, Endy TP, et al. Dengue Virus (DV) enhancing antibody activity in preillness plasma does not predict subsequent disease severity or viremia in secondary DV infection. J Infect Dis. 2005;192:510–9.

    PubMed  CAS  Google Scholar 

  197. Libraty DH, Acosta LP, Tallo V, et al. A prospective nested case-control study of Dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med. 2009;6:e1000171.

    PubMed  PubMed Central  Google Scholar 

  198. Mangada MM, Endy TP, Nisalak A, et al. Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren. J Infect Dis. 2002;185:1697–703.

    PubMed  Google Scholar 

  199. Cobra C, Rigau-Perez JG, Kuno G, Vorndam V. Symptoms of dengue fever in relation to host immunologic response and virus serotype, Puerto Rico, 1990–1991. Am J Epidemiol. 1995;142:1204–11.

    PubMed  CAS  Google Scholar 

  200. Sharp TW, Wallace MR, Hayes CG, et al. Dengue fever in U.S. troops during Operation Restore Hope, Somalia, 1992–1993. Am J Trop Med Hyg. 1995;53:89–94.

    PubMed  CAS  Google Scholar 

  201. Shirtcliffe P, Cameron E, Nicholson KG, Wiselka MJ. Don’t forget dengue! Clinical features of dengue fever in returning travellers. J R Coll Physicians Lond. 1998;32:235–7.

    PubMed  CAS  Google Scholar 

  202. Schwartz E, Mendelson E, Sidi Y. Dengue fever among travelers. Am J Med. 1996;101:516–20.

    PubMed  CAS  Google Scholar 

  203. Kalayanarooj S, Vaughn DW, Nimmannitya S, et al. Early clinical and laboratory indicators of acute dengue illness. J Infect Dis. 1997;176:313–21.

    PubMed  CAS  Google Scholar 

  204. Srikiatkhachorn A, Ajariyakhajorn C, Endy TP, et al. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic Fever. J Virol. 2007;81:1592–600.

    PubMed  CAS  PubMed Central  Google Scholar 

  205. Halstead SB. Dengue. Lancet. 2007;370:1644–52.

    PubMed  Google Scholar 

  206. Guzman MG, Kouri G, Martinez E, et al. Clinical and serologic study of Cuban children with dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Bull Pan Am Health Organ. 1987;21:270–9.

    PubMed  CAS  Google Scholar 

  207. Khor BS, Liu JW, Lee IK, Yang KD. Dengue hemorrhagic fever patients with acute abdomen: clinical experience of 14 cases. Am J Trop Med Hyg. 2006;74:901–4.

    PubMed  Google Scholar 

  208. Diaz A, Kouri G, Guzman MG, et al. Description of the clinical picture of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) in adults. Bull Pan Am Health Organ. 1988;22:133–44.

    PubMed  CAS  Google Scholar 

  209. Rigau-Perez JG. Severe dengue: the need for new case definitions. Lancet Infect Dis. 2006;6:297–302.

    PubMed  Google Scholar 

  210. Potts JA, Gibbons RV, Rothman AL, et al. Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl Trop Dis. 2010;4:e769.

    PubMed  PubMed Central  Google Scholar 

  211. Deen JL, Harris E, Wills B, et al. The WHO dengue classification and case definitions: time for a reassessment. Lancet. 2006;368:170–3.

    PubMed  Google Scholar 

  212. Chhour YM, Ruble G, Hong R, et al. Hospital-based diagnosis of hemorrhagic fever, encephalitis, and hepatitis in Cambodian children. Emerg Infect Dis. 2002;8:485–9.

    PubMed  PubMed Central  Google Scholar 

  213. Solomon T, Dung NM, Vaughn DW, et al. Neurological manifestations of dengue infection. Lancet. 2000;355:1053–9.

    PubMed  CAS  Google Scholar 

  214. Patey O, Ollivaud L, Breuil J, Lafaix C. Unusual neurologic manifestations occurring during dengue fever infection. Am J Trop Med Hyg. 1993;48:793–802.

    PubMed  CAS  Google Scholar 

  215. Nimmannitya S, Thisyakorn U, Hemsrichart V. Dengue haemorrhagic fever with unusual manifestations. Southeast Asian J Trop Med Public Health. 1987;18:398–406.

    PubMed  CAS  Google Scholar 

  216. Misra UK, Kalita J, Srivastav A, Pradhan PK. The prognostic role of magnetic resonance imaging and single-photon emission computed tomography in viral encephalitis. Acta Radiol. 2008;49:827–32.

    PubMed  CAS  Google Scholar 

  217. Araujo FM, Araujo MS, Nogueira RM, et al. Central nervous system involvement in dengue: a study in fatal cases from a dengue endemic area. Neurology. 2012;78:736–42.

    PubMed  CAS  Google Scholar 

  218. Chan CP, Choi JW, Cao KY, et al. Detection of serum neopterin for early assessment of dengue virus infection. J Infect. 2006;53:152–8.

    PubMed  Google Scholar 

  219. Freedman DO, Weld LH, Kozarsky PE, et al. Spectrum of disease and relation to place of exposure among ill returned travelers. N Engl J Med. 2006;354:119–30.

    PubMed  CAS  Google Scholar 

  220. Tricou V, Minh NN, Van TP, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis. 2010;4:e785.

    PubMed  PubMed Central  Google Scholar 

  221. Panpanich R, Sornchai P, Kanjanaratanakorn K. Corticosteroids for treating dengue shock syndrome. Cochrane Database Syst Rev. 2006;(3)CD003488.

    Google Scholar 

  222. Tam DT, Ngoc TV, Tien NT, et al. Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin Infect Dis. 2012;55:1216–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  223. Gratz NG, Halstead SB. The control of dengue vectors. In: Halstead SB, editor. Dengue. London: Imperial College Press; 2008. p. 361–87.

    Google Scholar 

  224. World Health Organization. Dengue control strategies. http://www.who.int/denguecontrol/control_strategies/en/. Accessed 30 Aug 2013.

  225. Ooi EE, Goh KT, Gubler DJ. Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis. 2006;12:887–93.

    PubMed  PubMed Central  Google Scholar 

  226. McGraw EA, O’Neill SL. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol. 2013;11:181–93.

    PubMed  CAS  Google Scholar 

  227. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia?–A statistical analysis of current data. FEMS Microbiol Lett. 2008;281:215–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  228. Charlat S, Hurst GD, Mercot H. Evolutionary consequences of Wolbachia infections. Trends Genet. 2003;19:217–23.

    PubMed  CAS  Google Scholar 

  229. Turley AP, Moreira LA, O’Neill SL, McGraw EA. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito. Aedes aegypti. PLoS Negl Trop Dis. 2009;3:e516.

    PubMed  PubMed Central  Google Scholar 

  230. McMeniman CJ, Lane RV, Cass BN, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323:141–4.

    PubMed  CAS  Google Scholar 

  231. Evans O, Caragata EP, McMeniman CJ, et al. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol. 2009;212:1436–41.

    PubMed  PubMed Central  Google Scholar 

  232. Laven H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature. 1967;216:383–4.

    PubMed  CAS  Google Scholar 

  233. Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310:326–8.

    PubMed  CAS  Google Scholar 

  234. Walker T, Johnson PH, Moreira LA, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476:450–3.

    PubMed  CAS  Google Scholar 

  235. Harris AF, Nimmo D, McKemey AR, et al. Field performance of engineered male mosquitoes. Nat Biotechnol. 2011;29:1034–7.

    PubMed  CAS  Google Scholar 

  236. Subbaraman N. Science snipes at Oxitec transgenic-mosquito trial. Nat Biotechnol. 2011;29:9–11.

    PubMed  Google Scholar 

  237. James S, Simmons CP, James AA. Ecology. Mosquito trials. Science. 2011;334:771–2.

    PubMed  CAS  Google Scholar 

  238. Sabin AB, Schlesinger RW. Production of immunity to dengue with virus modified by propagation in mice. Science. 1945;101:640–2.

    PubMed  CAS  Google Scholar 

  239. Dorrance WR, Frankel JW, Gordon I, Patterson PR, Schlesinger RW, Winter JW. Clinical and serologic response of man to immunization with attenuated dengue and yellow fever viruses. J Immunol. 1956;77:352–64.

    PubMed  CAS  Google Scholar 

  240. Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol. 2009;9:741–7.

    PubMed  CAS  Google Scholar 

  241. Querec TD, Akondy RS, Lee EK, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10:116–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  242. Ohrr H, Tandan JB, Sohn YM, Shin SH, Pradhan DP, Halstead SB. Effect of single dose of SA 14-14-2 vaccine 1 year after immunisation in Nepalese children with Japanese encephalitis: a case–control study. Lancet. 2005;366:1375–8.

    PubMed  CAS  Google Scholar 

  243. Yu Y. Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine. 2010;28:3635–41.

    PubMed  CAS  Google Scholar 

  244. Halstead SB. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res. 2003;60:421–67.

    PubMed  CAS  Google Scholar 

  245. Bhamarapravati N, Yoksan S, Chayaniyayothin T, Angsubphakorn S, Bunyaratvej A. Immunization with a live attenuated dengue-2-virus candidate vaccine (16681-PDK 53): clinical, immunological and biological responses in adult volunteers. Bull World Health Organ. 1987;65:189–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  246. Bhamarapravati N, Sutee Y. Live attenuated tetravalent dengue vaccine. Vaccine. 2000;18 Suppl 2:44–7.

    PubMed  CAS  Google Scholar 

  247. Kanesa-thasan N, Sun W, Kim-Ahn G, et al. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine. 2001;19:3179–88.

    PubMed  CAS  Google Scholar 

  248. Bhamarapravati N, Yoksan S. Study of bivalent dengue vaccine in volunteers. Lancet. 1989;1:1077.

    PubMed  CAS  Google Scholar 

  249. Sabchareon A, Lang J, Chanthavanich P, et al. Safety and immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of serotype concentration, ratio, and multiple doses. Am J Trop Med Hyg. 2002;66:264–72.

    PubMed  Google Scholar 

  250. Sabchareon A, Lang J, Chanthavanich P, et al. Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr Infect Dis J. 2004;23:99–109.

    PubMed  Google Scholar 

  251. Chanthavanich P, Luxemburger C, Sirivichayakul C, et al. Short report: immune response and occurrence of dengue infection in thai children three to eight years after vaccination with live attenuated tetravalent dengue vaccine. Am J Trop Med Hyg. 2006;75:26–8.

    PubMed  Google Scholar 

  252. Kitchener S, Nissen M, Nasveld P, et al. Immunogenicity and safety of two live-attenuated tetravalent dengue vaccine formulations in healthy Australian adults. Vaccine. 2006;24:1238–41.

    PubMed  CAS  Google Scholar 

  253. Sanchez V, Gimenez S, Tomlinson B, et al. Innate and adaptive cellular immunity in flavivirus-naive human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3). Vaccine. 2006;24:4914–26.

    PubMed  CAS  Google Scholar 

  254. Balas C, Kennel A, Deauvieau F, et al. Different innate signatures induced in human monocyte-derived dendritic cells by wild-type dengue 3 virus, attenuated but reactogenic dengue 3 vaccine virus, or attenuated nonreactogenic dengue 1–4 vaccine virus strains. J Infect Dis. 2011;203:103–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  255. Sabin AB. Recent advances in our knowledge of dengue and sandfly fever. Am J Trop Med Hyg. 1955;4:198–207.

    PubMed  CAS  Google Scholar 

  256. Innis BL, Eckels KH, Kraiselburd E, et al. Virulence of a live dengue virus vaccine candidate: a possible new marker of dengue virus attenuation. J Infect Dis. 1988;158:876–80.

    PubMed  CAS  Google Scholar 

  257. McKee Jr KT, Bancroft WH, Eckels KH, Redfield RR, Summers PL, Russell PK. Lack of attenuation of a candidate dengue 1 vaccine (45AZ5) in human volunteers. Am J Trop Med Hyg. 1987;36:435–42.

    PubMed  Google Scholar 

  258. Hoke Jr CH, Malinoski FJ, Eckels KH, et al. Preparation of an attenuated dengue 4 (341750 Carib) virus vaccine. II. Safety and immunogenicity in humans. Am J Trop Med Hyg. 1990;43:219–26.

    PubMed  Google Scholar 

  259. Edelman R, Tacket CO, Wasserman SS, et al. A live attenuated dengue-1 vaccine candidate (45AZ5) passaged in primary dog kidney cell culture is attenuated and immunogenic for humans. J Infect Dis. 1994;170:1448–55.

    PubMed  CAS  Google Scholar 

  260. Edelman R, Wasserman SS, Bodison SA, et al. Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am J Trop Med Hyg. 2003;69:48–60.

    PubMed  Google Scholar 

  261. Kanesa-Thasan N, Edelman R, Tacket CO, et al. Phase 1 studies of Walter Reed Army Institute of Research candidate attenuated dengue vaccines: selection of safe and immunogenic monovalent vaccines. Am J Trop Med Hyg. 2003;69:17–23.

    PubMed  CAS  Google Scholar 

  262. Sun W, Edelman R, Kanesa-Thasan N, et al. Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates. Am J Trop Med Hyg. 2003;69:24–31.

    PubMed  Google Scholar 

  263. Sun W, Cunningham D, Wasserman SS, et al. Phase 2 clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naive adults. Hum Vaccin. 2009;5:33–40.

    PubMed  Google Scholar 

  264. Watanaveeradej V, Simasathien S, Nisalak A, et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus-naive infants. Am J Trop Med Hyg. 2011;85:341–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  265. Simasathien S, Thomas SJ, Watanaveeradej V, et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus naive children. Am J Trop Med Hyg. 2008;78:426–33.

    PubMed  Google Scholar 

  266. Thomas SJ, Eckels KH, Carletti I, et al. A phase II, randomized, safety and immunogenicity study of a re-derived, live-attenuated dengue virus vaccine in healthy adults. Am J Trop Med Hyg. 2013;88:73–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  267. Lai CJ, Zhao BT, Hori H, Bray M. Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc Natl Acad Sci U S A. 1991;88:5139–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  268. Bray M, Lai CJ. Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc Natl Acad Sci U S A. 1991;88:10342–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  269. Men R, Bray M, Clark D, Chanock RM, Lai CJ. Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol. 1996;70:3930–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  270. Durbin AP, Whitehead SS, McArthur J, et al. rDEN4delta30, a live attenuated dengue virus type 4 vaccine candidate, is safe, immunogenic, and highly infectious in healthy adult volunteers. J Infect Dis. 2005;191:710–8.

    PubMed  Google Scholar 

  271. Blaney Jr JE, Durbin AP, Murphy BR, Whitehead SS. Development of a live attenuated dengue virus vaccine using reverse genetics. Viral Immunol. 2006;19:10–32.

    PubMed  CAS  Google Scholar 

  272. McArthur JH, Durbin AP, Marron JA, et al. Phase I clinical evaluation of rDEN4Delta30-200,201: a live attenuated dengue 4 vaccine candidate designed for decreased hepatotoxicity. Am J Trop Med Hyg. 2008;79:678–84.

    PubMed  PubMed Central  Google Scholar 

  273. Durbin AP, McArthur J, Marron JA, et al. The live attenuated dengue serotype 1 vaccine rDEN1Delta30 is safe and highly immunogenic in healthy adult volunteers. Hum Vaccin. 2006;2:167–73.

    PubMed  CAS  Google Scholar 

  274. Durbin AP, McArthur JH, Marron JA, et al. rDEN2/4Delta30(ME), a live attenuated chimeric dengue serotype 2 vaccine is safe and highly immunogenic in healthy dengue-naive adults. Hum Vaccin. 2006;2:255–60.

    PubMed  CAS  Google Scholar 

  275. Durbin AP, Whitehead SS, Shaffer D, et al. A single dose of the DENV-1 candidate vaccine rDEN1Delta30 is strongly immunogenic and induces resistance to a second dose in a randomized trial. PLoS Negl Trop Dis. 2011;5:e1267.

    PubMed  PubMed Central  Google Scholar 

  276. Durbin AP, Mayer SV, Rossi SL, et al. Emergence potential of sylvatic dengue virus type 4 in the urban transmission cycle is restrained by vaccination and homotypic immunity. Virology. 2013;439:34–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  277. Rice CM, Grakoui A, Galler R, Chambers TJ. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989;1:285–96.

    PubMed  CAS  Google Scholar 

  278. Chambers TJ, Nestorowicz A, Mason PW, Rice CM. Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol. 1999;73:3095–101.

    PubMed  CAS  PubMed Central  Google Scholar 

  279. Guirakhoo F, Weltzin R, Chambers TJ, et al. Recombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates. J Virol. 2000;74:5477–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  280. Lai CJ, Monath TP. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv Virus Res. 2003;61:469–509.

    PubMed  CAS  Google Scholar 

  281. Guirakhoo F, Arroyo J, Pugachev KV, et al. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol. 2001;75: 7290–304.

    PubMed  CAS  PubMed Central  Google Scholar 

  282. Monath TP, McCarthy K, Bedford P, et al. Clinical proof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections. Vaccine. 2002;20:1004–18.

    PubMed  CAS  Google Scholar 

  283. Guirakhoo F, Kitchener S, Morrison D, et al. Live attenuated chimeric yellow fever dengue type 2 (ChimeriVax-DEN2) vaccine: Phase I clinical trial for safety and immunogenicity: effect of yellow fever pre-immunity in induction of cross neutralizing antibody responses to all 4 dengue serotypes. Hum Vaccin. 2006;2:60–7.

    PubMed  Google Scholar 

  284. Morrison D, Legg TJ, Billings CW, Forrat R, Yoksan S, Lang J. A novel tetravalent dengue vaccine is well tolerated and immunogenic against all 4 serotypes in flavivirus-naive adults. J Infect Dis. 2010;201:370–7.

    PubMed  CAS  Google Scholar 

  285. Poo J, Galan F, Forrat R, Zambrano B, Lang J, Dayan GH. Live-attenuated tetravalent dengue vaccine in dengue-naive children, adolescents, and adults in Mexico City: randomized controlled phase 1 trial of safety and immunogenicity. Pediatr Infect Dis J. 2011;30(1):e9–e17.

    Google Scholar 

  286. Capeding RZ, Luna IA, Bomasang E, et al. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines. Vaccine. 2011;29:3863–72.

    PubMed  Google Scholar 

  287. Guy B, Barrere B, Malinowski C, Saville M, Teyssou R, Lang J. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine. 2011;29:7229–41.

    PubMed  CAS  Google Scholar 

  288. Guy B, Saville M, Lang J. Development of Sanofi Pasteur tetravalent dengue vaccine. Hum Vaccin. 2012; 54 Suppl 18:S15–7.

    Google Scholar 

  289. Sabchareon A, Wallace D, Sirivichayakul C, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012;380:1559–67.

    PubMed  CAS  Google Scholar 

  290. Kinney RM, Butrapet S, Chang GJ, et al. Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology. 1997;230: 300–8.

    PubMed  CAS  Google Scholar 

  291. Huang CY, Butrapet S, Pierro DJ, et al. Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol. 2000;74:3020–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  292. Butrapet S, Huang CY, Pierro DJ, Bhamarapravati N, Gubler DJ, Kinney RM. Attenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5′ noncoding region and nonstructural proteins 1 and 3. J Virol. 2000;74:3011–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  293. Huang CY, Butrapet S, Tsuchiya KR, Bhamarapravati N, Gubler DJ, Kinney RM. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol. 2003;77: 11436–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  294. Butrapet S, Kinney RM, Huang CY. Determining genetic stabilities of chimeric dengue vaccine candidates based on dengue 2 PDK-53 virus by sequencing and quantitative TaqMAMA. J Virol Methods. 2006;131:1–9.

    PubMed  CAS  Google Scholar 

  295. Huang CY, Kinney RM, Livengood JA, et al. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax). PLoS Negl Trop Dis. 2013;7:e2243.

    PubMed  CAS  PubMed Central  Google Scholar 

  296. Osorio JE, Huang CY, Kinney RM, Stinchcomb DT. Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. Vaccine. 2011;29:7251–60.

    PubMed  CAS  Google Scholar 

  297. ClinicalTrials.Gov. National Institute of Health. http://clinicaltrials.gov/ct2/results?term=inviragen+AND+dengue&Search=Search. Accessed 1 Sept 2013.

  298. Hoke CH, Nisalak A, Sangawhipa N, et al. Protection against Japanese encephalitis by inactivated vaccines. N Engl J Med. 1988;319:608–14.

    PubMed  CAS  Google Scholar 

  299. Kaltenbock A, Dubischar-Kastner K, Eder G, et al. Safety and immunogenicity of concomitant vaccination with the cell-culture based Japanese Encephalitis vaccine IC51 and the hepatitis A vaccine HAVRIX1440 in healthy subjects: a single-blind, randomized, controlled Phase 3 study. Vaccine. 2009;27:4483–9.

    PubMed  CAS  Google Scholar 

  300. Craig SC, Pittman PR, Lewis TE, et al. An accelerated schedule for tick-borne encephalitis vaccine: the American Military experience in Bosnia. Am J Trop Med Hyg. 1999;61:874–8.

    PubMed  CAS  Google Scholar 

  301. Fulginiti VA, Kempe CH. Killed-measles-virus vaccine. Lancet. 1967;2:468.

    PubMed  CAS  Google Scholar 

  302. Polack FP. Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr Res. 2007;62:111–5.

    PubMed  Google Scholar 

  303. Coller BA, Barrett AD, Thomas SJ. The development of Dengue vaccines. Introduction. Vaccine. 2011;29:7219–20.

    PubMed  Google Scholar 

  304. Clements DE, Coller BA, Lieberman MM, et al. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine. 2010;28:2705–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  305. Robert Putnak J, Coller BA, Voss G, et al. An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine. 2005;23:4442–52.

    PubMed  CAS  Google Scholar 

  306. Putnak R, Barvir DA, Burrous JM, et al. Development of a purified, inactivated, dengue-2 virus vaccine prototype in Vero cells: immunogenicity and protection in mice and rhesus monkeys. J Infect Dis. 1996;174:1176–84.

    PubMed  CAS  Google Scholar 

  307. Putnak R, Cassidy K, Conforti N, et al. Immunogenic and protective response in mice immunized with a purified, inactivated, Dengue-2 virus vaccine prototype made in fetal rhesus lung cells. Am J Trop Med Hyg. 1996;55:504–10.

    PubMed  CAS  Google Scholar 

  308. Eckels KH, Dubois DR, Putnak R, et al. Modification of dengue virus strains by passage in primary dog kidney cells: preparation of candidate vaccines and immunization of monkeys. Am J Trop Med Hyg. 2003;69:12–6.

    PubMed  Google Scholar 

  309. Danko JR, Beckett CG, Porter KR. Development of dengue DNA vaccines. Vaccine. 2011;29:7261–6.

    PubMed  CAS  Google Scholar 

  310. Beckett CG, Tjaden J, Burgess T, et al. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine. 2011;29:960–8.

    PubMed  CAS  Google Scholar 

  311. Cassetti MC, Durbin A, Harris E, et al. Report of an NIAID workshop on dengue animal models. Vaccine. 2010;28:4229–34.

    PubMed  PubMed Central  Google Scholar 

  312. Zompi S, Harris E. Animal models of dengue virus infection. Viruses. 2012;4:62–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  313. Cox J, Brown HE, Rico-Hesse R. Variation in vector competence for dengue viruses does not depend on mosquito midgut binding affinity. PLoS Negl Trop Dis. 2011;5:e1172.

    PubMed  PubMed Central  Google Scholar 

  314. Tan GK, Ng JK, Trasti SL, Schul W, Yip G, Alonso S. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice. PLoS Negl Trop Dis. 2010;4:e672.

    PubMed  PubMed Central  Google Scholar 

  315. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435:14–28.

    PubMed  CAS  PubMed Central  Google Scholar 

  316. Harrison VR, Eckels KH, Sagartz JW, Russell PK. Virulence and immunogenicity of a temperature-sensitive dengue-2 virus in lower primates. Infect Immun. 1977;18:151–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  317. Halstead SB, Casals J, Shotwell H, Palumbo N. Studies on the immunization of monkeys against dengue. I. Protection derived from single and sequential virus infections. Am J Trop Med Hyg. 1973;22:365–74.

    PubMed  CAS  Google Scholar 

  318. Halstead SB, Palumbo NE. Studies on the immunization of monkeys against dengue. II. Protection following inoculation of combinations of viruses. Am J Trop Med Hyg. 1973;22:375–81.

    PubMed  CAS  Google Scholar 

  319. Onlamoon N, Noisakran S, Hsiao HM, et al. Dengue virus-induced hemorrhage in a nonhuman primate model. Blood. 2010;115:1823–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  320. Monath TP. Treatment of yellow fever. Antiviral Res. 2008;78:116–24.

    PubMed  CAS  Google Scholar 

  321. Russell PK, Nisalak A. Dengue virus identification by the plaque reduction neutralization test. J Immunol. 1967;99:291–6.

    PubMed  CAS  Google Scholar 

  322. Rainwater-Lovett K, Rodriguez-Barraquer I, Cummings DA, Lessler J. Variation in dengue virus plaque reduction neutralization testing: systematic review and pooled analysis. BMC Infect Dis. 2012;12:233.

    PubMed  PubMed Central  Google Scholar 

  323. Wu RS, Chan KR, Tan HC, Chow A, Allen Jr JC, Ooi EE. Neutralization of dengue virus in the presence of Fc receptor-mediated phagocytosis distinguishes serotype-specific from cross-neutralizing antibodies. Antiviral Res. 2012;96:340–3.

    PubMed  CAS  Google Scholar 

  324. Moi ML, Lim CK, Chua KB, Takasaki T, Kurane I. Dengue virus infection-enhancing activity in serum samples with neutralizing activity as determined by using FcgammaR-expressing cells. PLoS Negl Trop Dis. 2012;6:e1536.

    PubMed  CAS  PubMed Central  Google Scholar 

  325. Putnak JR, de la Barrera R, Burgess T, et al. Comparative evaluation of three assays for measurement of dengue virus neutralizing antibodies. Am J Trop Med Hyg. 2008;79:115–22.

    PubMed  Google Scholar 

  326. Fink J, Gu F, Vasudevan SG. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol. 2006;16:263–75.

    PubMed  CAS  Google Scholar 

  327. Bethell DB, Flobbe K, Cao XT, et al. Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis. 1998;177:778–82.

    PubMed  CAS  Google Scholar 

  328. Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis. 2006;19:429–36.

    PubMed  Google Scholar 

  329. Kurane I, Ennis FA. Cytotoxic T lymphocytes in dengue virus infection. Curr Top Microbiol Immunol. 1994;189:93–108.

    PubMed  CAS  Google Scholar 

  330. Mathew A, Rothman AL. Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev. 2008;225:300–13.

    PubMed  CAS  Google Scholar 

  331. Chau TN, Quyen NT, Thuy TT, et al. Dengue in Vietnamese infants–results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J Infect Dis. 2008;198:516–24.

    PubMed  PubMed Central  Google Scholar 

  332. Malavige GN, Ogg G. Pathogenesis of severe dengue infection. Ceylon Med J. 2012;57:97–100.

    PubMed  CAS  Google Scholar 

  333. Rothman AL. Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis. Curr Top Microbiol Immunol. 2010;338:83–98.

    PubMed  CAS  Google Scholar 

  334. van de Weg CA, van Gorp EC, Supriatna M, Soemantri A, Osterhaus AD, Martina BE. Evaluation of the 2009 WHO dengue case classification in an Indonesian pediatric cohort. Am J Trop Med Hyg. 2012;86:166–70.

    PubMed  PubMed Central  Google Scholar 

  335. Trung DT, Thao le TT, Dung NM, et al. Clinical features of dengue in a large Vietnamese cohort: intrinsically lower platelet counts and greater risk for bleeding in adults than children. PLoS Negl Trop Dis. 2012;6:e1679.

    PubMed  Google Scholar 

  336. Sabchareon A, Sirivichayakul C, Limkittikul K, et al. Dengue infection in children in Ratchaburi, Thailand: a cohort study. I. Epidemiology of symptomatic acute dengue infection in children, 2006–2009. PLoS Negl Trop Dis. 2012;6:e1732.

    PubMed  PubMed Central  Google Scholar 

  337. Tien NT, Luxemburger C, Toan NT, et al. A prospective cohort study of dengue infection in schoolchildren in Long Xuyen, Viet Nam. Trans R Soc Trop Med Hyg. 2010;104:592–600.

    PubMed  Google Scholar 

  338. Kuan G, Gordon A, Aviles W, et al. The Nicaraguan pediatric dengue cohort study: study design, methods, use of information technology, and extension to other infectious diseases. Am J Epidemiol. 2009;170:120–9.

    PubMed  PubMed Central  Google Scholar 

  339. Comach G, Blair PJ, Sierra G, et al. Dengue virus infections in a cohort of schoolchildren from Maracay, Venezuela: a 2-year prospective study. Vector Borne Zoonotic Dis. 2009;9:87–92.

    PubMed  Google Scholar 

  340. Thomas SJ. Dengue human infection model: re-establishing a tool for understanding dengue immunology and advancing vaccine development. Hum Vaccin Immunother. 2013;9:1587–90.

    PubMed  CAS  Google Scholar 

  341. Graham RR, Juffrie M, Tan R, et al. A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. studies in 1995–1996. Am J Trop Med Hyg. 1999;61:412–9.

    PubMed  CAS  Google Scholar 

  342. Balmaseda A, Hammond SN, Tellez Y, et al. High seroprevalence of antibodies against dengue virus in a prospective study of schoolchildren in Managua, Nicaragua. Trop Med Int Health. 2006;11:935–42.

    PubMed  Google Scholar 

  343. Porter KR, Beckett CG, Kosasih H, et al. Epidemiology of dengue and dengue hemorrhagic fever in a cohort of adults living in Bandung, West Java, Indonesia. Am J Trop Med Hyg. 2005;72:60–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Thomas MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, S.J., Endy, T.P., Rothman, A.L. (2014). Flaviviruses: Dengue. In: Kaslow, R., Stanberry, L., Le Duc, J. (eds) Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7448-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7448-8_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7447-1

  • Online ISBN: 978-1-4899-7448-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics