Skip to main content

The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

  • Chapter
The Van Allen Probes Mission

Abstract

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the “highest quality” events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J.M. Albert, Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave. J. Geophys. Res. 105(A9), 21 (2000). 191

    Article  Google Scholar 

  • W.I. Axford, Flow of mass and energy in the Solar system, physics of solar planetary environments, in Proceeding of the International Symposium on Solar-Terrestrial Physics, vol. 1 June 7–18 American Geophysical Union (1976), pp. 270–283

    Google Scholar 

  • J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19, 821 (1992)

    Article  ADS  Google Scholar 

  • J.B. Blake, S.S. Imamoto, The proton switches. J. Spacecr. Rockets 29, 595 (1992)

    ADS  Google Scholar 

  • J.B. Blake, M.D. Looper, D.N. Baker, R. Nakamura, B. Klecker, D. Hovestadt, New high temporal and spatial resolution measurements by SAMPEX of the precipitation of relativistic electrons. Adv. Space Res. 18(8), 171–186 (1996)

    Article  ADS  Google Scholar 

  • J.B. Blake et al., The ECT instrument on the Van Allen probes (this issue)

    Google Scholar 

  • J.W. Bonnell et al., The electric field instrument for THEMIS. Space Sci. Rev. 114, 303–341 (2008). doi:10.1007/s11214-008-9469-2

    Article  ADS  Google Scholar 

  • D.H. Brautigam, G.P. Ginet, J.M. Albert, J.R. Wygant, D.E. Rowland, A. Ling, J. Bass, CRRES electric field power spectra and radial diffusion coefficients. J. Geophys. Res. 110, A02214 (2005). doi:10.1029/2004JA010612

    Article  ADS  Google Scholar 

  • C. Cattell et al., Polar observations of solitary waves at low and high altitudes and comparison to theory. Adv. Space Res. 28, 1631 (2001)

    Article  ADS  Google Scholar 

  • C. Cattell et al., Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35, L01105 (2008). doi:10.1029/2007GL032009

    Article  ADS  Google Scholar 

  • C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of large amplitude whistler mode waves in the inner magnetosphere. J. of Geophys. Res. 35, L17S16 (2008). doi:10.1029/2008GL033643

    Google Scholar 

  • L. Dai et al., Observations of surface waves in jets from magnetotail reconnection. J. Geophys. Res. 116, A12227 (2011). doi:10.1029/2011JA017004

    Article  ADS  Google Scholar 

  • J. Dombeck et al., Observed trends in auroral zone ion mode solitary structure characteristics using data from polar. J. Geophys. Res. 106, 19013 (2001)

    Article  ADS  Google Scholar 

  • R.E. Ergun et al., The FAST satellite field instrument. Space Sci. Rev. 98, 67–91 (2001)

    Article  ADS  Google Scholar 

  • G. Gustafsson et al., The electric field and wave experiment for the CLUSTER mission. Space Sci. Rev. 79, 137 (1997)

    Article  ADS  Google Scholar 

  • P. Harvey, F.S. Mozer, D. Pankow, J. Wygant, N.C. Maynard, H. Singer, W. Sullivan, P.B. Anderson, A. Pedersen, C.-G. Falthammar, P. Tanskannen, in The Electric Field Instrument on the Polar Satellite in the Global Geospace Mission, vol. 71, ed. by C.T. Russell (Kluwer Academic, Dordrecht, 1995). Reprinted from Space Sciences Rev., 71, N1-4, 1995

    Google Scholar 

  • R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25(15), 3011–3014 (1998)

    Article  ADS  Google Scholar 

  • M.K. Hudson, A.D. Kotelnikov, X. Li, I. Roth, M. Temerin, J. Wygant, Simulation of proton radiation belt formation during the March 24, 1991 SSC. Geophys. Res. Lett. 22, 291 (1995)

    Article  ADS  Google Scholar 

  • M.K. Hudson, S.R. Elkington, J.G. Lyon, V.A. Marchenko, I. Roth, M. Temerin, J.B. Blake, M.S. Gussenhoven, J.R. Wygant, Simulations of radiation belt formation during storm sudden commencement. J. Geophys. Res. 102, 14087 (1997)

    Article  ADS  Google Scholar 

  • M.K. Hudson, S.R. Elkington, J.G. Lyon, M.J. Wiltberger, in Radiation Belt Electron Acceleration by ULF Wave Drift Resonance: Simulation of 1997 and 1998 Storms, ed. by G. Siscoe, P. Song, H. Singer. AGU Monograph, Space Weather (AGU, Washington, 2001), p. 289

    Google Scholar 

  • M.K. Hudson, R.E. Denton, M.R. Lessard, E.G. Miftakhova, R.E. Anderson, A study of Pc5 ULF oscillations. Ann. Geophys. 22, 289 (2004)

    Article  ADS  Google Scholar 

  • J.C. Ingraham, T.E. Cayton, R.D. Belian, R.A. Christensen, R.H.W. Friedel, M.M. Meier, G.D. Reeves, M. Tuszewski, Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991. J. Geophys. Res. 106(A11), 25759–25776 (2001). doi:10.1029/2000JA000458

    Article  ADS  Google Scholar 

  • P.J. Kellogg et al., Electron trapping and charge transport by large amplitude whistlers. Geophys. Res. Lett. 37, L20106 (2010). doi:10.1029/2010GL044845

    Article  ADS  Google Scholar 

  • K. Kersten et al., Observation of relativistic electron microbursts in conjunction with enhanced radiation belt whistler mode waves. Geophys. Res. Lett. 38, L08107 (2011). doi:10.1029/2001GL046810

    Article  ADS  Google Scholar 

  • K. Kirby et al., The radiation belt storm probes-observatory and environment (this issue)

    Google Scholar 

  • C. Kletzing et al., The electric and magnetic field instrument suite and integrated science and integrated science (EMFISIS) on RBSP. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9993-6 (this issue)

    Google Scholar 

  • X. Li, I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, J.B. Blake, Simulation of prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 20, 2423 (1993)

    Article  ADS  Google Scholar 

  • X. Li, D.N. Baker, M. Temerin, G. Reeves, R. Belian, Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25, 3763 (1998)

    Article  ADS  Google Scholar 

  • K.R. Lorentzen, J.E. Mazur, M.D. Looper, J.F. Fennell, J.B. Blake, Multisatellite observations of MeV ion injections during storms. J. Geophys. Res. 107, 1231 (2002)

    Article  Google Scholar 

  • G. Marklund, Viking investigations of auroral electrodynamical processes. J. Geophys. Res. 98, 1691 (1993)

    Article  ADS  Google Scholar 

  • G. Marklund et al., The Swedish small satellite program for space plasma investigations. Space Sci. Rev. 111(3–4), 377–413 (2004). doi:10.1023/B:SPAC.0000032690.82775.dB

    Article  ADS  Google Scholar 

  • R.M. Millan, R.P. Lin, D.M. Smith, K.R. Lorentzen, M.P. McCarthy, X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys. Res. Lett. 29, 2194 (2002)

    Article  ADS  Google Scholar 

  • R.M. Millan (this issue)

    Google Scholar 

  • F. Mozer, Analysis of techniques for measuring DC and AC electric fields in the magnetosphere. Space Sci. Rev. 14, 272 (1973)

    Article  ADS  Google Scholar 

  • F.S. Mozer et al., A proposal to measure quasi-static electric fields on the ISEE-1 mother daughter satellite, University of California Berkeley Space Science Technical Note, UCBSSL No. 454 (1973)

    Google Scholar 

  • F.S. Mozer et al., The dc and ac electric field, plasma density, plasma temperature and field-aligned current experiments on the S3-# spacecraft. J. Geophys. Res. 84(A10), 5875 (1979)

    Article  ADS  Google Scholar 

  • T.P. O’Brien, K.R. Lorentzen, I.R. Mann, N.P. Meredith, J.B. Blake, J.F. Fennell, M.D. Looper, D.K. Milling, R.R. Anderson, Energization of relativistic electrons in the presence of ULF power and MeV microbursts: evidence for dual ULF and VLF acceleration. J. Geophys. Res. 108(A8), 1329 (2003). doi:10.1029/2002JA009784

    Article  Google Scholar 

  • A. Pedersen, Solar wind and magnetospheric plasma diagnostics by spacecraft electrostatic potential measurements. Ann. Geophys. 13, 118 (1995)

    Article  ADS  Google Scholar 

  • A. Pedersen et al., Electron density estimations derived from spacecraft potential measurements on cluster in tenuous plasma regimes. J. Geophys. Res. 113, A07S33 (2008). doi:10.1029/2007JA012636

    Article  ADS  Google Scholar 

  • G. Reeves et al. (this issue)

    Google Scholar 

  • I. Roth, M. Temerin, M.K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods. Ann. Geophys. 17, 631 (1999)

    Article  ADS  Google Scholar 

  • D. Rowland, J.R. Wygant, The dependence of the large scale electric field in the inner magnetosphere on magnetic activity. J. Geophys. Res. 103(A7), 14959 (1998)

    Article  ADS  Google Scholar 

  • D. Rowland, The electrodynamics of the inner magnetosphere during major geomagnetic storms. PhD Thesis, University of Minnesota (2002)

    Google Scholar 

  • O. Santolik, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108, 1278 (2003). doi:10.1029/20002JA009791

    Article  Google Scholar 

  • H. Spence et al. (this issue)

    Google Scholar 

  • D. Summers, Y. Omura, Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys. Res. Lett. 34, L24205 (2007). doi:10.1029/2007GL032226

    Article  ADS  Google Scholar 

  • A. Vampola, H. Korth, Electron drift echoes in the inner magnetosphere. Geophys. Res. Lett. 19, 625 (1992)

    Article  ADS  Google Scholar 

  • L. Wilson et al., The properties of large amplitude whistler mode waves in the magnetosphere: propagation and relationship with geomagnetic activity. Geophys. Res. Lett. 38, L17107 (2011). doi:10.1029/2011GL048671

    ADS  Google Scholar 

  • J.R. Wygant, P.R. Harvey, D. Pankow, F.S. Mozer, N. Maynard, H. Singer, M. Smiddy, W. Sullivan, P. Anderson, The CRRES electric field experiment/Langmuir probe. J. Spacecr. Rockets 29, 601 (1992)

    Article  ADS  Google Scholar 

  • J.R. Wygant, F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, M. Smiddy, Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV drift echoes. Geophys. Res. Lett. 21, 1730 (1994)

    Article  ADS  Google Scholar 

  • J.R. Wygant, H.J. Singer, M. Temerin, F. Mozer, M.K. Hudson, Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J. Geophys. Res. 98, JA01436 (1998)

    Google Scholar 

  • H.-C. Yeh, J.C. Foster, F.J. Rich, W. Swider, Storm-time electric field penetration observed at mid-latitude. J. Geophys. Res. 96, 5707–5721 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Wygant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Wygant, J.R. et al. (2013). The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission. In: Fox, N., Burch, J.L. (eds) The Van Allen Probes Mission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7433-4_6

Download citation

Publish with us

Policies and ethics