Skip to main content

The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission

  • Chapter
GRAIL: Mapping the Moon’s Interior

Abstract

The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Aoki, H. Kinoshita, Note on the relation between the equinox and Guinot’s non-rotating origin. Celest. Mech. 29, 335–360 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • S. Aoki, B. Guinot, G.K. Kaplan, H. Kinoshita, D. McCarthy, P.K. Seidelmann, The new definition of universal time. Astron. Astrophys. 105, 359–361 (1982)

    ADS  Google Scholar 

  • D.F. Argus, R.G. Gordon, No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett. 18, 2039–2042 (1991)

    Article  ADS  Google Scholar 

  • S.W. Asmar, Radio as a science tool. Proc. IEEE 98, 10 (2010)

    Article  Google Scholar 

  • S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and achievable accuracy in precision radio science observations. Radio Sci. 40 (2005). doi:10.1029/2004RS003101

  • J.G. Beerer, G.G. Havens, Operation the dual-orbiter GRAIL mission to measure the Moon’s gravity, in SpaceOps 2012 Conference, Stockholm, Sweden, June 2012

    Google Scholar 

  • C. Boucher, Z. Altamimi, L. Duhem, Results and analysis of the ITRF93. IERS Technical Note, 18, Observatoire de Paris, 1994

    Google Scholar 

  • C. Dunn, W. Bertiger, Y. Bar-Sever, S. Desai, B. Haines, D. Kuang, G. Franklin, I. Harris, G. Kruizinga, T. Meehan, S. Nandi, D. Nguyen, T. Rogstad, J.B. Thomas, J. Tien, L. Romans, M. Watkins, S.C. Wu, S. Bettadpur, J. Kim, Instrument of GRACE: GPS augments gravity measurements. GPS World 14, 16–28 (2003)

    Google Scholar 

  • E.G. Fahnestock, Comprehensive gravity and dynamics model determination of binary asteroid systems, in American Astronomical Society, DPS Meeting 41, #50.11 (2009)

    Google Scholar 

  • E.G. Fahnestock, R.S. Park, D.-N. Yuan, A.S. Konopliv, Spacecraft thermal and optical modeling impacts on estimation of the GRAIL lunar gravity field, in AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, AIAA, August 13–16, 2012, pp. 2012–4428

    Google Scholar 

  • R. Floberhagen, P. Visser, F. Weischede, Lunar albedo forces modeling and its effect on low lunar orbit and gravity field determination. Adv. Space Res. 23, 378–733 (1999)

    Google Scholar 

  • W.M. Folkner, DSN station locations and uncertainties. JPL TDA Progress Report, 42-128, 1-34, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1996

    Google Scholar 

  • W.M. Folkner, J.A. Steppe, S.H. Oliveau, Earth orientation parameter file description and usage. Interoffice Memorandum 335.1-11-93 (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1993

    Google Scholar 

  • J. Guinn, P. Wolff, TOPEX/Poseidon operational orbit determination results using global positioning satellites, in AAS/AIAA Astrodynamics Specialists Conference (1993). AAS-93-573

    Google Scholar 

  • S. Hatch, R. Roncoli, T. Sweetser, GRAIL trajectory design: lunar orbit insertion through science, in AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, August 2010. AIAA 2010-8385

    Google Scholar 

  • W.A. Heiskanen, H. Moritz, Physical geodesy. Bull. Géod. 86(1), 491–492 (1967)

    Article  Google Scholar 

  • T.L. Hoffman, GRAIL: gravity mapping the Moon, in Aerospace Conference, 2009 IEEE, Big Sky, MT, 7–14 March 2009. ISBN 978-1-4244-2622-5

    Google Scholar 

  • W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966). 124 pp.

    Google Scholar 

  • J. Kim, Simulation study of a low-low satellite-to-satellite tracking mission. Ph.D. dissertation, Univ. of Texas at Austin, May 2000

    Google Scholar 

  • J. Kim, B. Tapley, Error analysis of a low-low satellite-to-satellite tracking mission. J. Guid. Control Dyn. 25(6), 1100–1106 (2002)

    Article  ADS  Google Scholar 

  • W.M. Klipstein, B.W. Arnold, D.G. Enzer, A.A. Ruiz, J.Y. Yien, R.T. Wang, C.E. Dunn, The lunar gravity ranging system for the gravity recovery and interior laboratory (GRAIL) mission. Space Sci. Rev. (2013, this issue)

    Google Scholar 

  • A.S. Konopliv, S.W. Asmar, E. Carranza, D.N. Yuan, W.L. Sjogren, Recent gravity models as a result of the lunar prospector mission. Icarus 150, 1–18 (2001)

    Article  ADS  Google Scholar 

  • F.T. Krogh, Changing stepsize in the integration of differential equations using modified divided differences. JPL Tech. Mem. No. 312, Section 914 (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1973

    Google Scholar 

  • C.L. Lawson, R.J. Hanson, Solving Least Squares Problems. SIAM Classics in Applied Mathematics, vol. 15 (Society for Industrial and Applied Mathematics, Philadelphia, 1995)

    Book  MATH  Google Scholar 

  • R. Leavitt, A. Salama, Design and implementation of software algorithms for TOPEX/POSEIDON ephemeris representation, in AIAA/AAS Astrodynamics Specialists Conference (1993). AAS-93-724

    Google Scholar 

  • J.H. Lieske, T. Lederle, W. Fricke, B. Morando, Expressions for the precession quantities based upon the IAU (1976) system of astronomical constants. Astron. Astrophys. 58, 1–16 (1977)

    ADS  Google Scholar 

  • A.J. Mannucci, B.D. Wilson, D.-N. Yuan, C.H. Ho, U.J. Lindqwister, T.F. Runge, A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 33(3), 565–582 (1998)

    Article  ADS  Google Scholar 

  • D.D. McCarthy, G. Petit (eds.), IERS Conventions, IERS Technical Note, vol. 32 (2003)

    Google Scholar 

  • T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation (Wiley, Hoboken, 2003). 576 pp.

    Book  Google Scholar 

  • X.X. Newhall, J.G. Williams, Estimation of the lunar physical librations. Celest. Mech. Dyn. Astron. 66, 21–30 (1997)

    Article  ADS  Google Scholar 

  • R.S. Park, S.W. Asmar, E.G. Fahnestock, A.S. Konopliv, W. Lu, M.M. Watkins, Gravity recovery and interior laboratory simulations of static and temporal gravity field. J. Spacecr. Rockets 49, 390–400 (2012)

    Article  ADS  Google Scholar 

  • S. Pines, Uniform representation of the gravitational potential and its derivatives. AIAA J. 11, 1508–1511 (1973)

    Article  ADS  MATH  Google Scholar 

  • R. Roncoli, K. Fujii, Mission design overview for the gravity recovery and interior laboratory (GRAIL) mission, in AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, August 2010. AIAA 2010-8383

    Google Scholar 

  • P.K. Seidelmann, 1980 IAU theory of nutation: the final report of the IAU working group on nutation. Celest. Mech. 27, 79–106 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • B.D. Tapley, B. Schutz, G. Born, Statistical Orbit Determination (Elsevier, Boston, 2004a). 547 pp.

    Google Scholar 

  • B.D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31 (2004b). doi:10.1029/2004GL019920

  • B.J. Thomas, An analysis of gravity-field estimation based on intersatellite dual-1-way biased ranging. JPL Publication 98–15, May 1999

    Google Scholar 

  • S.G. Turyshev, V.T. Toth, M.V. Sazhin, General relativistic observables of the GRAIL mission. Phys. Rev. D 87, 024020 (2013)

    Article  ADS  Google Scholar 

  • J.M. Wahr, The forced nutations of an elliptical, rotating, elastic, and oceanless Earth. Geophys. J. R. Astron. Soc. 64, 705–727 (1981)

    Article  MATH  Google Scholar 

  • R.C. Weber, P.-Y. Lin, E.J. Garnero, Q. Williams, P. Lognonne, Seismic detection of the lunar core. Science 331, 309–313 (2011). doi:10.1126/science.1199375

    Article  ADS  Google Scholar 

  • J.G. Williams, A scheme for lunar inner core detection. Geophys. Res. Lett. 34, L03202 (2007). doi:10.1029/2006GL028185

    ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, W.M. Folkner, DE421 lunar orbit, physical librations, and surface coordinates. JPL IOM 335-JW, DB, WF-20080314-001, March 14, 2008

    Google Scholar 

  • D.-N. Yuan, W. Sjogren, A. Konopliv, A. Kucinskas, Gravity field of mars: a 75th degree and order model. J. Geophys. Res. 106(E10), 23377–23401 (2001)

    Article  ADS  Google Scholar 

  • M.T. Zuber, D.E. Smith, D.H. Lehman, T.L. Hoffman, S.W. Asmar, M.M. Watkins, Gravity recovery and interior laboratory (GRAIL): mapping the lunar interior from crust to core. Space Sci. Rev. (2013, this issue). doi:10.1007/s11214-012-9952-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami W. Asmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asmar, S.W. et al. (2013). The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission. In: Zuber, M.T., Russell, C.T. (eds) GRAIL: Mapping the Moon’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9584-0_3

Download citation

Publish with us

Policies and ethics