Skip to main content

Regulation of Cancer Cell Metabolism by Hypoxia

  • Chapter
  • First Online:
Tumor Metabolome Targeting and Drug Development

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1122 Accesses

Abstract

The growth of a tumor usually results in the development of hypoxia, which is primarily a consequence of the tumor outgrowing existing vasculature and the disorganized nature of vascular growth induced by the tumor itself. The low oxygen tension at the site of neoplastic growth has a significant effect on the metabolic status of the cells involved. In order for the cells to survive the harsh conditions of low oxygen and nutrition, the metabolism of the cell switches from an aerobic type of metabolism to an anaerobic one, relying primarily on glycolysis for the production of energy and metabolic intermediates that feed various biosynthetic pathways. Because this phenotype is associated with increased cell survival, drug resistance, and ultimately poor patient prognosis, the metabolic components and the mediators of the hypoxic response are viable targets in the war on cancer. Currently, a variety of drugs are being explored that influence the mediators of the hypoxic response, such as hypoxia-inducible factor-1 (HIF-1), and those that target metabolic enzymes directly. These agents show promise in improving the current standard of care by acting in a synergistic manner with current cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribatti D, Vacca A, Presta M (2001) Dec) An Italian pioneer in the study of tumor angiogenesis. Haematologica 86(12):1234–1235

    Google Scholar 

  2. Goldmann E. (1908) The Growth of Malignant Disease in Man and the Lower Animals, with special reference to the Vascular System. Proc R Soc Med 1:1–13

    PubMed Central  PubMed  Google Scholar 

  3. Thomlinson RH, Gray LH (1955) Dec) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549

    Article  Google Scholar 

  4. Bayer C, Vaupel P (2012) Acute versus chronic hypoxia in tumors: Controversial data concerning time frames and biological consequences. Strahlenther Onkol 188(7):616–627

    Google Scholar 

  5. Braun RD, Lanzen JL, Snyder SA, Dewhirst MW. (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. American Journal of Physiology—Heart and Circulatory Physiology. 280(6):H2533–H44

    Google Scholar 

  6. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104(13):5431–5436

    Google Scholar 

  7. Haroon ZA, Raleigh JA, Greenberg CS, Dewhirst MW (2000) Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg 231(1):137–147

    Google Scholar 

  8. Vaupel P, Schlenger K, Knoop C, Höckel M. Oxygenation of Human Tumors (1991) Evaluation of Tissue Oxygen Distribution in Breast Cancers by Computerized O2 Tension Measurements. Cancer Res 51(12):3316–3322

    Google Scholar 

  9. Cárdenas-Navia LI, Yu D, Braun RD, Brizel DM, Secomb TW, Dewhirst MW (2004) Tumor-dependent Kinetics of Partial Pressure of Oxygen Fluctuations during Air and Oxygen Breathing. Cancer Res 64(17):6010–6017

    Google Scholar 

  10. Vaupel PW, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41(5):2008–2013

    Google Scholar 

  11. Vaupel P, Okunieff P, Kallinowski F, Neuringer LJ (1989) Dec) Correlations between 31P-NMR spectroscopy and tissue O2 tension measurements in a murine fibrosarcoma. Radiat Res 120(3):477–493

    Article  Google Scholar 

  12. Kallinowski F, Schlenger KH, Kloes M, Stohrer M, Vaupel P (1989) Tumor blood flow: the principal modulator of oxidative and glycolytic metabolism, and of the metabolic micromilieu of human tumor xenografts in vivo. Int J Cancer 44(2):266–272

    Article  Google Scholar 

  13. Becker A, Stadler P, Lavey RS, Hansgen G, Kuhnt T, Lautenschlager C, et al (2000) Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 46(2):459–466

    Article  Google Scholar 

  14. Hockel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51(22):6098–6102

    Google Scholar 

  15. Lartigau E, Le Ridant AM, Lambin P, Weeger P, Martin L, Sigal R, et al (1993) Oxygenation of head and neck tumors. Cancer 71(7):2319–2325

    Google Scholar 

  16. Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, Dunst J (1998) Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 42(1):35–41

    Google Scholar 

  17. Stanley JA, Shipley WU, Steel GG (1977) Influence of tumour size on hypoxic fraction and therapeutic sensitivity of Lewis lung tumour. Br J Cancer 36(1):105–113

    Google Scholar 

  18. Boucher Y, Lee I, Jain RK (1995) Lack of General Correlation between Interstitial Fluid Pressure and Oxygen Partial Pressure in Solid Tumors. Microvasc Res 50(2):175–182

    Google Scholar 

  19. Gullino PM, Grantham FH, Courtney AH (1967) Utilization of oxygen by transplanted tumors in vivo. Cancer Res 27(6):1020–1030

    Google Scholar 

  20. Bayer C, Shi K, Astner ST, Maftei CA, Vaupel P (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80(4):965–968

    Google Scholar 

  21. Cairns RA, Kalliomaki T, Hill RP (2001) Acute (Cyclic) Hypoxia Enhances Spontaneous Metastasis of KHT Murine Tumors. Cancer Res 61(24):8903–8908

    Google Scholar 

  22. Chaplin DJ, Olive PL, Durand RE. Intermittent Blood Flow in a Murine Tumor (1987) Radiobiological Effects. Cancer Res 47(2):597–601

    Google Scholar 

  23. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors (1989) a review. Cancer Res 49(23):6449–6465

    Google Scholar 

  24. Coleman CN. Hypoxia in Tumors (1988) A Paradigm for the Approach to Biochemical and Physiologic Heterogeneity. J Natl Cancer Inst 80(5):310–317

    Google Scholar 

  25. Feldmann H, Molls M, Vaupel P. Blood flow and oxygenation status of human tumors. Coloproctol. 1999 1999/03/01;21(2):57–69

    Google Scholar 

  26. Rak JW, St Croix BD, Kerbel RS (1995) Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs 6(1):3–18

    Google Scholar 

  27. Vaupel P, Mayer A, Briest S, Hockel M (2003) Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res 63(22):7634–7637

    Google Scholar 

  28. Vaupel P, Harrison L. (2004) Tumor Hypoxia: Causative Factors, Compensatory Mechanisms, and Cellular Response. The Oncologist 9(suppl 5):4–9

    Google Scholar 

  29. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med. [10.1038/nm0603–713]. 2003;9(6):713–25

    Google Scholar 

  30. McDonald DM, Baluk P (2002 Sep 15) Significance of blood vessel leakiness in cancer. Cancer Res 62(18):5381–5385

    Google Scholar 

  31. Brown JM (1990) Mar 7) Tumor hypoxia, drug resistance, and metastases. J Natl Cancer Inst 82(5):338–339

    Article  Google Scholar 

  32. Young SD, Hill RP (1990) Effects of Reoxygenation on Cells from Hypoxic Regions of Solid Tumors: Analysis of Transplanted Murine Tumors for Evidence of DNA Overreplication. Cancer Res 50(16):5031–5038

    Google Scholar 

  33. Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22(2):258–273

    Article  Google Scholar 

  34. Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, et al (2004) Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia. Br J Cancer 91(6):1181–1189

    Google Scholar 

  35. Young SD, Hill RP (1990) Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J Natl Cancer Inst 82(5):371–380

    Google Scholar 

  36. Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P (1996) Association between Tumor Hypoxia and Malignant Progression in Advanced Cancer of the Uterine Cervix. Cancer Res 56(19):4509–4515

    Google Scholar 

  37. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA (1953) The Concentration of Oxygen Dissolved in Tissues at the Time of Irradiation as a Factor in Radiotherapy. Br J Radiol 26(312):638–648

    Google Scholar 

  38. Denekamp J. Review article (1993) angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66(783):181–196

    Google Scholar 

  39. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. International Journal of Radiation Oncology*Biology*Physics 38(2):285–289

    Google Scholar 

  40. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, et al (1996 Mar 1) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56(5):941–943

    Google Scholar 

  41. Padhani AR, Neeman M (2001 Oct) Challenges for imaging angiogenesis. Br J Radiol 74(886):886–890

    Google Scholar 

  42. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. American Journal of Physiology – Lung Cellular and Molecular Physiology (2000) 279(6):L1005–L1028

    Google Scholar 

  43. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91(5):807–819

    Google Scholar 

  44. McKee TaM, J (2003) Biochemistry : the molecular basis of Life. 3rd ed. New York: McGraw-Hill

    Google Scholar 

  45. Prabhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol 90(5):1986–1994

    Google Scholar 

  46. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138

    Google Scholar 

  47. Frezza C, Gottlieb E (2009) Mitochondria in cancer: Not just innocent bystanders. Semin Cancer Biol 19(1):4–11

    Google Scholar 

  48. Busk M, Horsman MR, Kristjansen PEG, Kogel AJ van der, Bussink J, Overgaard J (2008) Aerobic glycolysis in cancers: Implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer 122(12):2726–2734

    Google Scholar 

  49. Nakashima RA, Paggi MG, Pedersen PL (1984) Contributions of glycolysis and oxidative phosphorylation to adenosine 5’-triphosphate production in AS-30D hepatoma cells. Cancer Res 44(12 Pt 1):5702–6.

    Google Scholar 

  50. Voet D, Voet JG (2004) Biochemistry. 3rd ed. New York: Wiley

    Google Scholar 

  51. Weljie AM, Jirik FR (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol 43(7):981–989

    Google Scholar 

  52. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Google Scholar 

  53. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    Google Scholar 

  54. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al (2007) A Mitochondria-K + Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell 11(1):37–51

    Google Scholar 

  55. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763

    Google Scholar 

  56. Mathupala SP, Rempel A, Pedersen PL (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 29(4):339–343

    Google Scholar 

  57. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The Biology of Cancer (2008) Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab 7(1):11–20

    Google Scholar 

  58. Kunkel M, Reichert TE, Benz P, Lehr H-A, Jeong J-H, Wieand S, et al (2003) Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97(4):1015–1024

    Google Scholar 

  59. Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, et al (2001) Glucose Transporter Glut-1 Expression Correlates with Tumor Hypoxia and Predicts Metastasis-free Survival in Advanced Carcinoma of the Cervix. Clin Cancer Res 7(4):928–934

    Google Scholar 

  60. Fujiwara S, Kawano Y, Yuki H, Okuno Y, Nosaka K, Mitsuya H, et al (2013 Jan 15) PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br J Cancer 108(1):170–178

    Google Scholar 

  61. Gong L, Cui Z, Chen P, Han H, Peng J, Leng X (2012) Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med Oncol 29(2):909–914

    Google Scholar 

  62. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418

    Google Scholar 

  63. Plas DR, Thompson CB (2002) Cell metabolism in the regulation of programmed cell death. Trends in Endocrinology Metabolism 13(2):75–78

    Google Scholar 

  64. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer [10.1038/nrc1478] 4(11):891–899

    Google Scholar 

  65. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect (2009) the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Google Scholar 

  66. Kroemer G, Pouyssegur J (2008) Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell 13(6):472–482

    Google Scholar 

  67. Lunt SY, Vander Heiden MG. Aerobic glycolysis (2011) meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Google Scholar 

  68. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61

    Google Scholar 

  69. Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H (2011 Dec 1) Tumor cell metabolism: an integral view. Cancer Biol Ther 12(11):939–948

    Google Scholar 

  70. Kannan R, Lyon I, Baker N (1980) Dietary control of lipogenesis in vivo in host tissues and tumors of mice bearing Ehrlich ascites carcinoma. Cancer Res 40(12):4606–4611

    Google Scholar 

  71. Ookhtens M, Kannan R, Lyon I, Baker N (1984) Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 247(1):R146–R153

    Google Scholar 

  72. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279(15):2610–2623

    Google Scholar 

  73. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9(4):358–365

    Google Scholar 

  74. Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302(4):898–903

    Google Scholar 

  75. Pizer ES, Wood FD, Pasternack GR (1996) Kuhajda FP. Fatty Acid Synthase (FAS): A Target for Cytotoxic Antimetabolites in HL60 Promyelocytic Leukemia Cells. Cancer Res 56(4):745–751

    Google Scholar 

  76. Szutowicz A, Kwiatkowski J, Angielski S (1979) Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 39(6):681–687

    Google Scholar 

  77. Kearney KE, Pretlow TG, Pretlow TP (2009) Increased expression of fatty acid synthase in human aberrant crypt foci: possible target for colorectal cancer prevention. Int J Cancer 125(1):249–252

    Google Scholar 

  78. Zhao W, Kridel S, Thorburn A, Kooshki M, Little J, Hebbar S, et al (2006) Fatty acid synthase: a novel target for antiglioma therapy. Br J Cancer 95(7):869–878

    Google Scholar 

  79. Sebastiani V, Visca P, Botti C, Santeusanio G, Galati GM, Piccini V, et al (2004) Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol 92(1):101–105

    Google Scholar 

  80. Visca P, Sebastiani V, Botti C, Diodoro MG, Lasagni RP, Romagnoli F, et al (2004 Nov-Dec) Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res 24(6):4169–4173

    Google Scholar 

  81. Kawamura T, Kanno R, Fujii H, Suzuki T (2005) Expression of liver-type fatty-acid-binding protein, fatty acid synthase and vascular endothelial growth factor in human lung carcinoma. Pathobiology 72(5):233–240

    Google Scholar 

  82. Alo PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77(3):474–482

    Google Scholar 

  83. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253(12):4305–4309

    Google Scholar 

  84. Hochachka PW, Rupert JL, Goldenberg L, Gleave M, Kozlowski P. Going malignant (2002) the hypoxia-cancer connection in the prostate. Bioessays 24(8):749–757

    Google Scholar 

  85. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68(4):1003–1011

    Google Scholar 

  86. Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, et al (2009) Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci 100(5):821–827

    Google Scholar 

  87. Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, Sachdeva UM et al (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences. 2011 December 6, ;108(49):19611–6

    Google Scholar 

  88. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature [10.1038/nature10602] 481(7381):380–384

    Google Scholar 

  89. Gameiro Paulo AY, Wang Z, et al. (2013) In Vivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metab 17(3):372–385

    Google Scholar 

  90. Gimm T, Wiese M, Teschemacher B, Deggerich A, Schödel J, Knaup KX, et al (2010) Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. The FASEB Journal 24(11):4443–4458

    Google Scholar 

  91. Kuhajda FP. Fatty Acid Synthase and Cancer (2006) New Application of an Old Pathway. Cancer Res 66(12):5977–5980

    Google Scholar 

  92. Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA, et al (2010 Aug 24) Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A 107(34):15051–15056

    Google Scholar 

  93. Pallottini V, Guantario B, Martini C, Totta P, Filippi I, Carraro F, et al (2008 Jun 1) Regulation of HMG-CoA reductase expression by hypoxia. J Cell Biochem 104(3):701–709

    Google Scholar 

  94. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532.

    Google Scholar 

  95. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350

    Google Scholar 

  96. Kobayashi S, Millhorn DE (2001) Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells. J Neurochem 76(6):1935–1948

    Google Scholar 

  97. Soh H, Wasa M, Fukuzawa M (2007) Hypoxia upregulates amino acid transport in a human neuroblastoma cell line. J Pediatr Surg 42(4):608–612

    Google Scholar 

  98. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 93(18):9493–9498

    Google Scholar 

  99. Koumenis C (2006) ER stress, hypoxia tolerance and tumor progression. Curr Mol Med 6(1):55–69

    Google Scholar 

  100. Arsham AM, Howell JJ, Simon MC (2003) A Novel Hypoxia-inducible Factor-independent Hypoxic Response Regulating Mammalian Target of Rapamycin and Its Targets. J Biol Chem 278(32):29655–29660

    Google Scholar 

  101. Hebert DN, Molinari M (2007 Oct) In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiol Rev 87(4):1377–1408

    Google Scholar 

  102. Feldman DE, Chauhan V, Koong AC (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3(11):597–605

    Google Scholar 

  103. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, et al (2002 Nov) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416

    Google Scholar 

  104. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167(1):27–33

    Google Scholar 

  105. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Google Scholar 

  106. Tong X, Zhao F, Thompson CB (2009 Feb) The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19(1):32–37

    Google Scholar 

  107. Snell K, Natsumeda Y, Eble JN, Glover JL, Weber G (1988) Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br J Cancer 57(1):87–90

    Google Scholar 

  108. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al (2001 May) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21(10):3436–3444

    Google Scholar 

  109. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24(2):68–72

    Google Scholar 

  110. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 144–148

    Google Scholar 

  111. Lehninger AL, Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. 4th ed. W.H. Freeman, New York

    Google Scholar 

  112. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of Reactive Oxygen Species by Mitochondria (2003) CENTRAL ROLE OF COMPLEX III. J Biol Chem 278(38):36027–36031

    Article  Google Scholar 

  113. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updates 7(2):97–110

    Article  Google Scholar 

  114. Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337(0):1–13

    Google Scholar 

  115. Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28(5):831–834

    Google Scholar 

  116. Liu C-X, Zhou H-C, Yin Q-Q, Wu Y-L, Chen G-Q (2013) Targeting peroxiredoxins against leukemia. Exp Cell Res 319(2):170–176

    Google Scholar 

  117. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Google Scholar 

  118. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358(1):1–3

    Google Scholar 

  119. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R (2010) The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy. Mol Aspects Med 31(2):145–170

    Google Scholar 

  120. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    Google Scholar 

  121. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. American Journal of Physiology – Cell Physiology. 2008 February 1, 2008;294(2):C460–C6

    Google Scholar 

  122. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  Google Scholar 

  123. Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005 December 29, 2005;360(1464):2335–45

    Google Scholar 

  124. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Google Scholar 

  125. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    Google Scholar 

  126. Torres M, Forman HJ (2003) Redox signaling and the MAP kinase pathways. Biofactors 17(1–4):287–296

    Google Scholar 

  127. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors (2004) role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Google Scholar 

  128. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences 1998 95(20):11715–11720

    Google Scholar 

  129. Pouyssegur J, Mechta-Grigoriou F (2006) Redox regulation of the hypoxia-inducible factor. Biol Chem 387(10–11):1337–1346

    Google Scholar 

  130. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, et al (2004) JunD Reduces Tumor Angiogenesis by Protecting Cells from Oxidative Stress. Cell 118(6):781–794

    Google Scholar 

  131. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  Google Scholar 

  132. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36(1):1–12

    Article  Google Scholar 

  133. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, et al (1997) Targeting gene expression to hypoxic tumor cells. Nat Med 3(5):515–520

    Article  Google Scholar 

  134. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374

    Google Scholar 

  135. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, et al (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284(25):16767–16775

    Google Scholar 

  136. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, et al (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10(5):413–423

    Google Scholar 

  137. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16(12):1466–1471

    Google Scholar 

  138. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686

    Google Scholar 

  139. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Google Scholar 

  140. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1(3):237–246

    Google Scholar 

  141. Behrooz A, Ismail-Beigi F (1997) Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 272(9):5555–5562

    Google Scholar 

  142. Baumann MU, Zamudio S, Illsley NP (2007) Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol Cell Physiol 293(1):C477–C485

    Google Scholar 

  143. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, et al (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51):32529–32537

    Google Scholar 

  144. Mathupala SP, Rempel A, Pedersen PL (2001) Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 276(46):43407–43412

    Google Scholar 

  145. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56

    Google Scholar 

  146. Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A (1995 Sep 8) Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 270(36):21021–21027

    Google Scholar 

  147. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase (2006) a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Google Scholar 

  148. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197

    Google Scholar 

  149. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281(14):9030–9037

    Google Scholar 

  150. Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A, et al (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14(6):768–779

    Google Scholar 

  151. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122

    Google Scholar 

  152. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    Google Scholar 

  153. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108(49):19611–19616

    Google Scholar 

  154. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Google Scholar 

  155. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, et al (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 29(16):4527–4538

    Google Scholar 

  156. Narravula S, Colgan SP (2001) Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 166(12):7543–7548

    Google Scholar 

  157. Belanger AJ, Luo Z, Vincent KA, Akita GY, Cheng SH, Gregory RJ, et al (2007) Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor alpha/retinoid X receptor. Biochem Biophys Res Commun 364(3):567–572

    Google Scholar 

  158. Gimm T, Wiese M, Teschemacher B, Deggerich A, Schodel J, Knaup KX, et al (2010) Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J 24(11):4443–4458

    Google Scholar 

  159. Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, et al (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9(6):512–524

    Google Scholar 

  160. Shen GM, Zhao YZ, Chen MT, Zhang FL, Liu XL, Wang Y, et al (2012) Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem J 441(2):675–683

    Google Scholar 

  161. Sundelin JP, Stahlman M, Lundqvist A, Levin M, Parini P, Johansson ME, et al (2012) Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma. PLoS One 7(11):e48694

    Google Scholar 

  162. Castellano J, Aledo R, Sendra J, Costales P, Juan-Babot O, Badimon L, et al (2011) Hypoxia stimulates low-density lipoprotein receptor-related protein-1 expression through hypoxia-inducible factor-1alpha in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31(6):1411–1420

    Google Scholar 

  163. Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, et al (2002) Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277(8):6183–6187

    Google Scholar 

  164. Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, et al (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A 96(6):3047–3052

    Google Scholar 

  165. Obach M, Navarro-Sabate A, Caro J, Kong X, Duran J, Gomez M, et al (2004) 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 279(51):53562–53570

    Google Scholar 

  166. Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, et al (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29(20):2962–2972

    Google Scholar 

  167. Chen KF, Lai YY, Sun HS, Tsai SJ (2005) Transcriptional repression of human cad gene by hypoxia inducible factor-1alpha. Nucleic Acids Res 33(16):5190–5198

    Google Scholar 

  168. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904

    Google Scholar 

  169. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-Induced Energy Stress Regulates mRNA Translation and Cell Growth. Mol Cell 21(4):521–531

    Google Scholar 

  170. Harris AL (2002) Hypoxia [mdash] a key regulatory factor in tumour growth. Nat Rev Cancer [10.1038/nrc704] 2(1):38–47

    Google Scholar 

  171. Bernier J, Denekamp J, Rojas A, Minatel E, Horiot J-C, Hamers H, et al (2000) ARCON: accelerated radiotherapy with carbogen and nicotinamide in head and neck squamous cell carcinomas. The experience of the Co-operative Group of Radiotherapy of the European Organization for Research and Treatment of Cancer (EORTC). Radiother Oncol 55(2):111–119

    Google Scholar 

  172. Chaplin DJ, Horsman MR, Aoki DS. Nicotinamide, Fluosol DA and Carbogen: a strategy to reoxygenate acutely and chronically hypoxic cells in vivo. Br J Cancer. 1991;63(1):109–13

    Google Scholar 

  173. Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18(5):330–337

    Google Scholar 

  174. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible Factor 1 Activation by Aerobic Glycolysis Implicates the Warburg Effect in Carcinogenesis. J Biol Chem 277(26):23111–23115

    Google Scholar 

  175. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer [10.1038/nrc3064] 11(6):393–410

    Google Scholar 

  176. Rivera SP, Wang F, Saarikoski ST, Taylor RT, Chapman B, Zhang R, et al (2007) A Novel Promoter Element Containing Multiple Overlapping Xenobiotic and Hypoxia Response Elements Mediates Induction of Cytochrome P4502S1 by Both Dioxin and Hypoxia. J Biol Chem 282(15):10881–10893

    Google Scholar 

  177. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182(6):1683–1693

    Google Scholar 

  178. Tendler DS, Bao C, Wang T, Huang EL, Ratovitski EA, Pardoll DA, et al (2001) Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res 61(9):3682–3688

    Google Scholar 

  179. Hicks KO, Pruijn FB, Secomb TW, Hay MP, Hsu R, Brown JM, et al (2006) Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst 98(16):1118–1128

    Google Scholar 

  180. Zeman EM, Brown JM. Aerobic Radiosensitization by SR (4233) in Rodent and Human Cells: Mechanistic and Therapeutic Implications. Int J Radiat Biol 1991 1991/01/01;59(1):117–131

    Google Scholar 

  181. Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen GW (2001) Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 8(8):638–645

    Google Scholar 

  182. Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, et al (2008) A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 7(11):3598–3608

    Google Scholar 

  183. Onnis B, Rapisarda A, Melillo G (2009) Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med 13(9A):2780–6.

    Google Scholar 

  184. Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, et al (2010) Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res 70(17):6837–6848

    Google Scholar 

  185. Sapra P, Zhao H, Mehlig M, Malaby J, Kraft P, Longley C, et al (2008) Novel Delivery of SN38 Markedly Inhibits Tumor Growth in Xenografts, Including a Camptothecin-11–Refractory Model. Clin Cancer Res 14(6):1888–1896

    Google Scholar 

  186. Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G (2004) Topoisomerase I-Mediated Inhibition of Hypoxia-Inducible Factor 1: Mechanism and Therapeutic Implications. Cancer Res 64(4):1475–1482

    Google Scholar 

  187. Rapisarda A, Zalek J, Hollingshead M, Braunschweig T, Uranchimeg B, Bonomi CA, et al (2004) Schedule-dependent Inhibition of Hypoxia-inducible Factor-1α Protein Accumulation, Angiogenesis, and Tumor Growth by Topotecan in U251-HRE Glioblastoma Xenografts. Cancer Res 64(19):6845–6848

    Google Scholar 

  188. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al (2008) Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A 105(50):19579–19586

    Google Scholar 

  189. Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Mol Cancer Ther 3(3):233–244

    Google Scholar 

  190. Jacoby JJ, Erez B, Korshunova MV, Williams RR, Furutani K, Takahashi O, et al (2010) Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J Thorac Oncol 5(7):940–949

    Google Scholar 

  191. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM (2000) Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6(12):1335–1340

    Google Scholar 

  192. Bhattacharya S, Michels CL, Leung M-K, Arany ZP, Kung AL, Livingston DM (1999) Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes & Development 13(1):64–75

    Google Scholar 

  193. Gleadle JM, Ebert BL, Ratcliffe PJ (1995) Diphenylene iodonium inhibits the induction of erythropoietin and other mammalian 2 by hypoxia. Implications for the mechanism of oxygen sensing. Eur J Biochem 234(1):92–99

    Google Scholar 

  194. Wenger JB, Chun SY, Dang DT, Luesch H, Dang LH (2011) Combination therapy targeting cancer metabolism. Med Hypotheses 76(2):169–172

    Google Scholar 

  195. Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, et al (2004) Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6(1):33–43

    Google Scholar 

  196. Shin DH, Chun Y-S, Lee DS, Huang LE, Park J-W (2008) Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 111(6):3131–3136

    Google Scholar 

  197. Mackay H, Hedley D, Major P, Townsley C, Mackenzie M, Vincent M, et al (2005) A Phase II Trial with Pharmacodynamic Endpoints of the Proteasome Inhibitor Bortezomib in Patients with Metastatic Colorectal Cancer. Clin Cancer Res 11(15):5526–5533

    Google Scholar 

  198. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci U S A 106(7):2353–2358

    Google Scholar 

  199. Chen J, Zhao S, Nakada K, Kuge Y, Tamaki N, Okada F, et al (2003) Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am J Pathol 162(4):1283–1291

    Google Scholar 

  200. Isaacs JS, Jung Y-J, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 Regulates a von Hippel Lindau-independent Hypoxia-inducible Factor-1α-degradative Pathway. J Biol Chem 277(33):29936–29944

    Google Scholar 

  201. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, et al (2009) Regulation of Hypoxia-Inducible Factor 2α Signaling by the Stress-Responsive Deacetylase Sirtuin 1. Science 324(5932):1289–1293

    Google Scholar 

  202. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280(2):145–153

    Google Scholar 

  203. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KMS, Stratford IJ et al Targeting gene expression to hypoxic tumor cells. Nat Med. [10.1038/nm0597–515]. 1997;3(5):515–20

    Google Scholar 

  204. Koshikawa N, Takenaga K, Tagawa M, Sakiyama S (2000) Therapeutic efficacy of the suicide gene driven by the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Cancer Res 60(11):2936–2941

    Google Scholar 

  205. Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, et al (2000) The macrophage – a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7(3):255–262

    Google Scholar 

  206. Lemmon MJ, Zijl P van, Fox ME, Mauchline ML, Giaccia AJ, Minton NP, et al (1997 Aug) Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther 4(8):791–796

    Google Scholar 

  207. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    Google Scholar 

  208. Mimeault M, Batra SK (2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 17(1):30–54

    Google Scholar 

  209. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–1682

    Google Scholar 

  210. Wu CH, Ho YS, Tsai CY, Wang YJ, Tseng H, Wei PL, et al (2009) In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer 124(9):2210–2219

    Google Scholar 

  211. Zhan T, Digel M, Küch E-M, Stremmel W, Füllekrug J (2011) Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. Journal of Cellular Biochemistry 112(3):849–859

    Article  Google Scholar 

  212. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, et al (2010) May 12) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2(31):31ra4

    Google Scholar 

  213. Papandreou I, Goliasova T, Denko NC (2011) Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm? Int J Cancer 128(5):1001–1008

    Article  Google Scholar 

  214. Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A (2007) Nuclear Translocation of the Tumor Marker Pyruvate Kinase M2 Induces Programmed Cell Death. Cancer Res 67(4):1602–1608

    Google Scholar 

  215. Tejeda M, Gaal D, Hullan L, Schwab R, Szokoloczi O, Keri G (2007) Antitumor activity of the somatostatin structural derivative (TT-232), against mouse and human melanoma tumor models. Anticancer Res 27(6B):4015–4019

    Google Scholar 

  216. Baas T (2013) What to do with PKM2. Science-Business eXchange 6(2).

    Google Scholar 

  217. Cortés-Cros M, Hemmerlin C, Ferretti S, Zhang J, Gounarides JS, Yin H et al (2012) M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth. Proceedings of the National Academy of Sciences 2012

    Google Scholar 

  218. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7(1):110–120

    Google Scholar 

  219. Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, et al (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 45(1):104–108

    Google Scholar 

  220. Brawer MK (2005) Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev Urol 7 Suppl 7:S21–S26.

    Google Scholar 

  221. Sakamoto H, Mashima T, Sato S, Hashimoto Y, Yamori T, Tsuruo T (2001) Aug) Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Clin Cancer Res 7(8):2513–2518

    Google Scholar 

  222. Granchi C, Roy S, Giacomelli C, Macchia M, Tuccinardi T, Martinelli A et al (2011) Discovery of N-Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells. J Med Chem 54(6):1599–1612

    Article  Google Scholar 

  223. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121

    Article  Google Scholar 

  224. Supuran CT (2008) Development of small molecule carbonic anhydrase IX inhibitors. BJU Int 101:39–40

    Google Scholar 

  225. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, et al (2011) Targeting Tumor Hypoxia: Suppression of Breast Tumor Growth and Metastasis by Novel Carbonic Anhydrase IX Inhibitors. Cancer Res 71(9):3364–3376

    Google Scholar 

  226. McDonald PC, Winum JY, Supuran CT, Dedhar S (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3(1):84–97

    Google Scholar 

  227. Arnold K (2013) WILEX AG announces results of Phase III ARISER study with RENCAREX in clear cell renal cell carcinoma. [Press Release] Munich, Germany: WILEX 2012 [updated 10/16/2012; cited 2013 07/24/2013]; Available from: http://www.wilex.de/wp-content/uploads/2012/10/20121016-WILEX-RENCAREX-Phase-III_english1.pdf.

  228. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35(8):707–713

    Google Scholar 

  229. Schwarzenberg KW von, Wanner G, et al. (2013) Mode of Cell Death Induction by Pharmacological Vacuolar H + -ATPase (V-ATPase) Inhibition. J Biol Chem 288(2):1385–1396

    Google Scholar 

  230. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942

    Google Scholar 

  231. Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, et al (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91(14):6379–6383

    Article  Google Scholar 

  232. Maier T, Jenni S, Ban N (2006) Architecture of Mammalian Fatty Acid Synthase at 4.5 Å Resolution. Science 311(5765):1258–1262

    Article  Google Scholar 

  233. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA 2000 Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proceedings of the National Academy of Sciences 97(7):3450–3454

    Google Scholar 

  234. Moche M, Schneider G, Edwards P, Dehesh K, Lindqvist Y (1999) Structure of the Complex between the Antibiotic Cerulenin and Its Target, β-Ketoacyl-Acyl Carrier Protein Synthase. J Biol Chem 274(10):6031–6034

    Google Scholar 

  235. Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP (1996) Inhibition of Fatty Acid Synthesis Delays Disease Progression in a Xenograft Model of Ovarian Cancer. Cancer Res 56(6):1189–1193

    Google Scholar 

  236. Hadváry P, Sidler W, Meister W, Vetter W, Wolfer H (1991) The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem 266(4):2021–2027

    Google Scholar 

  237. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat Is a Novel Inhibitor of Fatty Acid Synthase with Antitumor Activity. Cancer Res 64(6):2070–2075

    Google Scholar 

  238. McNeely W, Benfield P. Orlistat. Drugs. 1998 Aug;56(2):241–9; discussion 50.

    Google Scholar 

  239. Pemble CW, Johnson LC, Kridel SJ, Lowther WT. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. Nat Struct Mol Biol. [10.1038/nsmb1265]. 2007;14(8):704–9

    Google Scholar 

  240. Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV (2003 Oct 10) Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 106(6):856–862

    Google Scholar 

  241. Lupu R, Menendez JA (2006) Pharmacological inhibitors of Fatty Acid Synthase (FASN)–catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr Pharm Biotechnol 7(6):483–493

    Google Scholar 

  242. Yeh CW, Chen WJ, Chiang CT, Lin-Shiau SY, Lin JK (2003) Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. Pharmacogenomics J 3(5):267–276

    Google Scholar 

  243. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. J Biol Chem 280(7):5636–5645

    Google Scholar 

  244. Menendez JA, Vellon L, Lupu R (2005) Antitumoral actions of the anti-obesity drug orlistat (Xenical™) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann Oncol 16(8):1253–1267

    Google Scholar 

  245. Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, et al (2006) Mechanism of Apoptosis Induced by the Inhibition of Fatty Acid Synthase in Breast Cancer Cells. Cancer Res 66(11):5934–5940

    Google Scholar 

  246. Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, et al (2000) Malonyl-Coenzyme-A Is a Potential Mediator of Cytotoxicity Induced by Fatty-Acid Synthase Inhibition in Human Breast Cancer Cells and Xenografts. Cancer Res 60(2):213–218

    Google Scholar 

  247. Wang Y, Kuhajda FP, Li JN, Pizer ES, Han WF, Sokoll LJ, et al (2001) Fatty acid synthase (FAS) expression in human breast cancer cell culture supernatants and in breast cancer patients. Cancer Lett 167(1):99–104

    Google Scholar 

  248. Bjarnadottir O, Romero Q, Bendahl PO, Jirstrom K, Ryden L, Loman N, et al (2013 Apr) Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res Treat 138(2):499–508

    Google Scholar 

  249. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, et al (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311–321

    Google Scholar 

  250. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer [10.1038/nrc2817] 10(4):267–277

    Google Scholar 

  251. Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, et al (2007) Chemical Inhibition of Acetyl-CoA Carboxylase Induces Growth Arrest and Cytotoxicity Selectively in Cancer Cells. Cancer Res 67(17):8180–8187

    Google Scholar 

  252. Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, et al (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 110(10):3919–3924

    Google Scholar 

  253. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al (2010) Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1. Cancer Res 70(22):8981–8987

    Google Scholar 

Download references

Acknowledgments

Research in the laboratory of J. C. is supported by the National Institutes of Health (NIH)/National Cancer Institute (R01CA166936) and the Carol Baldwin Breast Cancer Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pulkoski-Gross, A., Evensen, N., Cao, J. (2014). Regulation of Cancer Cell Metabolism by Hypoxia. In: Kanner, S. (eds) Tumor Metabolome Targeting and Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9545-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9545-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9544-4

  • Online ISBN: 978-1-4614-9545-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics