Skip to main content

Molecular Methods for Detection of Invasive Fungal Infections and Mycobacteria and Their Clinical Significance in Hematopoietic Stem Cell Transplantation

  • Protocol
  • First Online:
Bone Marrow and Stem Cell Transplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1109))

  • 3727 Accesses

Abstract

Infection remains an important source of morbidity and mortality in patients who undergo hematopoietic stem cell transplantation (HSCT). In the immune reconstitution period after transplantation, HSCT recipients are most likely to have bacterial or fungal infections. Invasive fungal infections (IFIs) and mycobacterial infections (MBIs) are among the complications of HSCT, with high morbidity and mortality rates. Early diagnosis of both is crucial in order to manipulate the disease and to avoid fulminant outcomes. This chapter reviews the current knowledge on the molecular diagnosis of IFIs and MBIs in HSCT recipients, describing two different polymerase chain reaction (PCR)-based methods, one commercial (qPCR, Roche) and one in-house IS6110-based protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    M. tuberculosis, M. africanum, M. microti, M. canetti, and M. bovis including bacillus Calmette–Guerin (BCG) group.

  2. 2.

    Most commonly encountered species in HSCT: M. fortuitum, M. chelonae, M. abscessus, and M. avium complex; for more detailed information on NTM, see ref. 6.

  3. 3.

    Predominantly M. fortuitum, M. abscessus, and M. chelonae.

  4. 4.

    M. tuberculosis strains which are resistant to at least rifampicin and isoniazid.

  5. 5.

    M. tuberculosis strains which are resistant to any fluoroquinolone and one of the three injectable aminoglycosides (capreomycin, kanamycin, and amikacin) in addition to rifampicin and isoniazid.

  6. 6.

    POC tests are diagnostic tests that do not require laboratory facilities or specialist training and that can be used where care is provided within a clinic or in the community.

References

  1. Babady NE, Miranda E, Gilhuley KA (2011) Evaluation of Luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. J Clin Microbiol 49:3777–3782

    PubMed Central  PubMed  Google Scholar 

  2. Srinivasan A, Wang C, Srivastava DK et al (2013) Timeline, epidemiology, and risk factors for bacterial, fungal, and viral infections in children and adolescents after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 19:94–101

    PubMed Central  PubMed  Google Scholar 

  3. Kontoyiannis DP, Marr KA, Park BJ et al (2010) Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis 50:1091–1100

    PubMed  Google Scholar 

  4. Ruhnke M, Bohme A, Buchheidt D et al (2012) Diagnosis of invasive fungal infections in hematology and oncology – guidelines from the Infectious Diseases Working Party in Haematology and Oncology of the German Society for Haematology and Oncology (AGIHO). Ann Oncol 23:823–833

    PubMed  CAS  Google Scholar 

  5. Cordonnier C, Martino R, Trabasso P et al (2004) Mycobacterial infection: a difficult and late diagnosis in stem cell transplant recipients. Clin Infect Dis Infect Dis Soc Am 38:1229–1236

    CAS  Google Scholar 

  6. Warren NG, Woods GL (2009) Mycobacteria. In: Hayden RT, Carrol KC, Tang YW et al (eds) Diagnostic microbiology of the immunocompromised host. ASM Press, New Hampshire, MA, pp 253–268

    Google Scholar 

  7. Muñoz A, Gonzalez-Vicent M, Badell I et al (2011) Mycobacterial diseases in pediatric hematopoietic SCT recipients. Bone Marrow Transplant 46:766–768

    PubMed  Google Scholar 

  8. Kumar D, Humar A (2011) The AST handbook of transplant infections. Wiley-Blackwell, Oxford

    Google Scholar 

  9. Procop GW, Roberts GD (2011) Laboratory diagnosis and susceptibility testing. In: Schlossberg D (ed) Tuberculosis and nontuberculous mycobacterial infections, 6th edn. ASM Press, New Hampshire, MA, pp 66–74

    Google Scholar 

  10. Al-Anazi KA, Al-Jasser AM, Evans DAP (2007) Infections caused by mycobacterium tuberculosis in patients with hematological disorders and in recipients of hematopoietic stem cell transplant, a twelve year retrospective study. Ann Clin Microbiol Antimicrob 6:16

    PubMed Central  PubMed  Google Scholar 

  11. Arslan O, Gürman G, Dilek I et al (1998) Incidence of tuberculosis after bone marrow transplantation in a single center from Turkey. Haematologia 29:59–62

    PubMed  CAS  Google Scholar 

  12. Ip MS, Yuen KY, Chiu EK et al (1995) Pulmonary infections in bone marrow transplantation: the Hong Kong experience. Respir Int Rev Thorac Dis 62:80–83

    CAS  Google Scholar 

  13. Martino R, Martínez C, Brunet S et al (1996) Tuberculosis in bone marrow transplant recipients: report of two cases and review of the literature. Bone Marrow Transplant 18:809–812

    PubMed  CAS  Google Scholar 

  14. Asano-Mori Y (2010) Fungal infections after hematopoietic stem cell transplantation. Int J Hematol 91:576–587

    PubMed  CAS  Google Scholar 

  15. Georgiadou SP, Kontoyiannis DP (2012) Concurrent lung infections in patients with hematological malignancies and invasive pulmonary aspergillosis: how firm is the Aspergillus diagnosis? J Infect 65:262–268

    PubMed  Google Scholar 

  16. Salmeron G, Porcher R, Bergeron A et al (2012) Persistent poor long-term prognosis of allogeneic hematopoietic stem cell transplant recipients surviving invasive aspergillosis. Haematologica 97:1357–1363

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Maschmeyer G (2011) Invasive fungal disease: better survival through early diagnosis and therapeutic intervention. Expert Rev Anti Infect Ther 9:279–281

    PubMed  Google Scholar 

  18. De Pauw B, Walsh TJ, Donnelly JP et al (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821

    PubMed Central  PubMed  Google Scholar 

  19. Wengenack NL, Binnicker MJ (2009) Fungal molecular diagnostics. Clin Chest Med 30:391–408

    PubMed  Google Scholar 

  20. Bretagne S (2011) Molecular detection and characterization of fungal pathogens. In: Persing DH, Tenover FC, Tang Y-W et al (eds) Molecular microbiology: diagnostic principles and practices. American Society for Microbiology, New Hampshire, MA, pp 655–667

    Google Scholar 

  21. Cesaro S, Stenghele C, Calore E et al (2008) Assessment of the light cycler PCR assay for diagnosis of invasive aspergillosis in paediatric patients with onco-haematological diseases. Mycoses 51:497–504

    PubMed  CAS  Google Scholar 

  22. Sanguinetti M, Posteraro B, Pagano L et al (2003) Comparison of real-time PCR, conventional PCR, and galactomannan antigen detection by enzyme-linked immunosorbent assay using bronchoalveolar lavage fluid samples from hematology patients for diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol 41:3922–3925

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Buess M, Cathomas G, Halter J et al (2012) Aspergillus-PCR in bronchoalveolar lavage for detection of invasive pulmonary aspergillosis in immunocompromised patients. BMC Infect Dis 12:237

    PubMed Central  PubMed  Google Scholar 

  24. Suarez F, Lortholary O, Buland S et al (2008) Detection of circulating Aspergillus fumigatus DNA by real-time PCR assay of large serum volumes improves early diagnosis of invasive aspergillosis in high-risk adult patients under hematologic surveillance. J Clin Microbiol 46:3772–3777

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Khot PD, Fredricks DN (2009) PCR-based diagnosis of human fungal infections. Expert Rev Anti Infect Ther 7:1201–1221

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Mengoli C, Cruciani M, Barnes RA et al (2009) Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis 9:89–96

    PubMed  CAS  Google Scholar 

  27. Williamson EC, Leeming JP, Palmer HM et al (2000) Diagnosis of invasive aspergillosis in bone marrow transplant recipients by polymerase chain reaction. Br J Haematol 108:132–139

    PubMed  CAS  Google Scholar 

  28. Buchheidt D, Baust C, Skladny H et al (2001) Detection of Aspergillus species in blood and bronchoalveolar lavage samples from immunocompromised patients by means of 2-step polymerase chain reaction: clinical results. Clin Infect Dis 33:428–435

    PubMed  CAS  Google Scholar 

  29. Halliday C, Hoile R, Sorrell T et al (2006) Role of prospective screening of blood for invasive aspergillosis by polymerase chain reaction in febrile neutropenic recipients of haematopoietic stem cell transplants and patients with acute leukaemia. Br J Haematol 132:478–486

    PubMed  Google Scholar 

  30. Badiee P, Alborzi A, Karimi M et al (2012) Diagnostic potential of nested PCR, galactomannan EIA, and beta-D-glucan for invasive aspergillosis in pediatric patients. J Infect Dev Ctries 6:352–357

    PubMed  CAS  Google Scholar 

  31. Spiess B, Buchheidt D, Baust C et al (2003) Development of a LightCycler PCR assay for detection and quantification of Aspergillus fumigatus DNA in clinical samples from neutropenic patients. J Clin Microbiol 41:1811–1818

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Musher B, Fredricks D, Leisenring W et al (2004) Aspergillus galactomannan enzyme immunoassay and quantitative PCR for diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. J Clin Microbiol 42:5517–5522

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Buchheidt D, Hummel M, Schleiermacher D et al (2004) Prospective clinical evaluation of a LightCycler-mediated polymerase chain reaction assay, a nested-PCR assay and a galactomannan enzyme-linked immunosorbent assay for detection of invasive aspergillosis in neutropenic cancer patients and haematological stem cell transplant recipients. Br J Haematol 125:196–202

    PubMed  CAS  Google Scholar 

  34. Kawazu M, Kanda Y, Nannya Y et al (2004) Prospective comparison of the diagnostic potential of real-time PCR, double-sandwich enzyme-linked immunosorbent assay for galactomannan, and a (1 → 3)-beta-d-glucan test in weekly screening for invasive aspergillosis in patients with hematological disorders. J Clin Microbiol 42:2733–2741

    PubMed Central  PubMed  CAS  Google Scholar 

  35. White PL, Linton CJ, Perry MD et al (2006) The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. Clin Infect Dis 42:479–486

    PubMed  CAS  Google Scholar 

  36. White PL, Mengoli C, Bretagne S et al (2011) Evaluation of Aspergillus PCR protocols for testing serum specimens. J Clin Microbiol 49:3842–3848

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Kim SH, Park C, Kwon EY et al (2012) Real-time nucleic acid sequence-based amplification to predict the clinical outcome of invasive aspergillosis. J Korean Med Sci 27:10–15

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Kurosawa M, Yonezumi M, Hashino S et al (2012) Epidemiology and treatment outcome of invasive fungal infections in patients with hematological malignancies. Int J Hematol 96:748–757

    PubMed  Google Scholar 

  39. Reichenberger F, Habicht J, Matt P et al (1999) Diagnostic yield of bronchoscopy in histologically proven invasive pulmonary aspergillosis. Bone Marrow Transplant 24:1195–1199

    PubMed  CAS  Google Scholar 

  40. Tuon FF (2007) A systematic literature review on the diagnosis of invasive aspergillosis using polymerase chain reaction (PCR) from bronchoalveolar lavage clinical samples. Rev Iberoam Micol 24:89–94

    PubMed  Google Scholar 

  41. Jones ME, Fox AJ, Barnes AJ et al (1998) PCR-ELISA for the early diagnosis of invasive pulmonary aspergillus infection in neutropenic patients. J Clin Pathol 51:652–656

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Hebart H, Loffler J, Reitze H et al (2000) Prospective screening by a panfungal polymerase chain reaction assay in patients at risk for fungal infections: implications for the management of febrile neutropenia. Br J Haematol 111:635–640

    PubMed  CAS  Google Scholar 

  43. Avni T, Levy I, Sprecher H et al (2012) Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J Clin Microbiol 50:3652–3658

    PubMed Central  PubMed  Google Scholar 

  44. Hebart H, Loffler J, Meisner C et al (2000) Early detection of aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening. J Infect Dis 181:1713–1719

    PubMed  CAS  Google Scholar 

  45. Cuenca-Estrella M, Meije Y, Diaz-Pedroche C et al (2009) Value of serial quantification of fungal DNA by a real-time PCR-based technique for early diagnosis of invasive Aspergillosis in patients with febrile neutropenia. J Clin Microbiol 47:379–384

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Florent M, Katsahian S, Vekhoff A et al (2006) Prospective evaluation of a polymerase chain reaction-ELISA targeted to Aspergillus fumigatus and Aspergillus flavus for the early diagnosis of invasive aspergillosis in patients with hematological malignancies. J Infect Dis 193:741–747

    PubMed  CAS  Google Scholar 

  47. Meyer MH, Letscher-Bru V, Jaulhac B et al (2004) Comparison of mycosis IC/F and plus aerobic/F media for diagnosis of fungemia by the bactec 9240 system. J Clin Microbiol 42:773–777

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Lau A, Halliday C, Chen SC et al (2010) Comparison of whole blood, serum, and plasma for early detection of candidemia by multiplex-tandem PCR. J Clin Microbiol 48:811–816

    PubMed Central  PubMed  Google Scholar 

  49. Avni T, Leibovici L, Paul M (2011) PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol 49:665–670

    PubMed Central  PubMed  Google Scholar 

  50. Shepard JR, Addison RM, Alexander BD et al (2008) Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol 46:50–55

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Lau A, Sorrell TC, Lee O et al (2008) Colony multiplex-tandem PCR for rapid, accurate identification of fungal cultures. J Clin Microbiol 46:4058–4060

    PubMed Central  PubMed  Google Scholar 

  52. Metwally L, Hogg G, Coyle PV et al (2007) Rapid differentiation between fluconazole-sensitive and -resistant species of Candida directly from positive blood-culture bottles by real-time PCR. J Med Microbiol 56:964–970

    PubMed  CAS  Google Scholar 

  53. Dunyach C, Bertout S, Phelipeau C et al (2008) Detection and identification of Candida spp. in human serum by LightCycler real-time polymerase chain reaction. Diagn Microbiol Infect Dis 60:263–271

    PubMed  CAS  Google Scholar 

  54. Innings A, Ullberg M, Johansson A et al (2007) Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol 45:874–880

    PubMed Central  PubMed  CAS  Google Scholar 

  55. White PL, Shetty A, Barnes RA (2003) Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 52:229–238

    PubMed  Google Scholar 

  56. Spiess B, Seifarth W, Hummel M et al (2007) DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol 45:3743–3753

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Westh H, Lisby G, Breysse F et al (2009) Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect 15:544–551

    PubMed  CAS  Google Scholar 

  58. Mallus F, Martis S, Serra C et al (2013) Usefulness of capillary electrophoresis-based multiplex PCR assay for species-specific identification of Candida spp. J Microbiol Methods 92:150–152

    PubMed  CAS  Google Scholar 

  59. Loeffler J, Dorn C, Hebart H et al (2003) Development and evaluation of the nuclisens basic kit NASBA for the detection of RNA from Candida species frequently resistant to antifungal drugs. Diagn Microbiol Infect Dis 45:217–220

    PubMed  CAS  Google Scholar 

  60. Morrell M, Fraser VJ, Kollef MH (2005) Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49:3640–3645

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Klingspor L, Jalal S (2006) Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin Microbiol Infect 12:745–753

    PubMed  CAS  Google Scholar 

  62. Erdstein AA, Daas P, Bradstock KF et al (2004) Tuberculosis in allogeneic stem cell transplant recipients: still a problem in the 21st century. Transplant Infect Dis J Transplant Soc 6:142–146

    CAS  Google Scholar 

  63. de la Cámara R, Martino R, Granados E et al (2000) Tuberculosis after hematopoietic stem cell transplantation: incidence, clinical characteristics and outcome. Spanish Group on Infectious Complications in Hematopoietic Transplantation. Bone Marrow Transplant 26:291–298

    PubMed  Google Scholar 

  64. Maeda T, Kusumi E, Kami M et al (2005) Disseminated tuberculosis following reduced-intensity cord blood transplantation for adult patients with hematological diseases. Bone Marrow Transplant 35:91–97

    PubMed  CAS  Google Scholar 

  65. Biral E, Faraci M, Lanino E et al (2012) Mycobacterium tuberculosis pneumonia and bacteremia after allogeneic hematopoietic stem cell transplant: report of an instructive pediatric case. New Microbiol 35:353–357

    PubMed  Google Scholar 

  66. Gea-Banacloche J, Masur H, Arns da Cuhna C et al (2009) Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. In: Tomblyn M, Chiller T, Einsele H et al (eds) Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation, pp 37–45

    Google Scholar 

  67. Akan H, Arslan O, Akan OA (2006) Tuberculosis in stem cell transplant patients. J Hospit Infect 62:421–426

    CAS  Google Scholar 

  68. Russo RL, Dulley FL, Suganuma L et al (2010) Tuberculosis in hematopoietic stem cell transplant patients: case report and review of the literature. Int J Infect Dis IJID Int Soc Infect Dis 14:187–191

    Google Scholar 

  69. De Assis RA, Kerbauy FR, Rodrigues M et al (2009) Mycobacterium tuberculosis infection: a rare late complication after cord blood hematopoietic SCT. Bone Marrow Transplant 43:667–668

    PubMed  Google Scholar 

  70. Shima T, Yoshimoto G, Miyamoto T et al (2009) Disseminated tuberculosis following second unrelated cord blood transplantation for acute myelogenous leukemia. Transplant Infect Dis J Transplant Soc 11:75–77

    CAS  Google Scholar 

  71. Doucette K, Fishman JA (2004) Nontuberculous mycobacterial infection in hematopoietic stem cell and solid organ transplant recipients. Clin Infect Dis Infect Dis Soc Am 38:1428–1439

    Google Scholar 

  72. Weinstock DM, Feinstein MB, Sepkowitz KA et al (2003) High rates of infection and colonization by nontuberculous mycobacteria after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 31:1015–1021

    PubMed  CAS  Google Scholar 

  73. Gaviria JM, Garcia PJ, Garrido SM et al (2000) Nontuberculous mycobacterial infections in hematopoietic stem cell transplant recipients: characteristics of respiratory and catheter-related infections. Biol Blood Marrow Transplant 6:361–369

    PubMed  CAS  Google Scholar 

  74. Razonable RR (2009) Nontuberculous mycobacterial infections after transplantation: a diversity of pathogens and clinical syndromes. Transplant Infect Dis J Transplant Soc 11:191–194

    CAS  Google Scholar 

  75. Nicholson O, Feja K, LaRussa P et al (2006) Nontuberculous mycobacterial infections in pediatric hematopoietic stem cell transplant recipients: case report and review of the literature. Pediatr Infect Dis J 25:263–267

    PubMed  Google Scholar 

  76. WHO (2012) Global tuberculosis report 2012. World Health Organization

    Google Scholar 

  77. Nyendak MR, Lewinsohn DA, Lewinsohn DM (2009) New diagnostic methods for tuberculosis. Curr Opin Infect Dis 22:174–182

    PubMed Central  PubMed  Google Scholar 

  78. Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378:57–72

    PubMed  Google Scholar 

  79. Forbes B (2011) Molecular detection and characterization of Mycobacterium tuberculosis. In: Persing DH, Tenover FC, Tang Y-W et al (eds) Molecular microbiology: diagnostic principles and practices. American Society for Microbiology, New Hampshire, MA, pp 415–436

    Google Scholar 

  80. Griffith DE, Aksamit T, Brown-Elliott BA et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416

    PubMed  CAS  Google Scholar 

  81. Boehme CC, Nabeta P, Henostroza G et al (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940

    PubMed Central  PubMed  CAS  Google Scholar 

  82. CDC Laboratories (2011) CDC|TB| report of an expert consultation on the uses of nucleic acid amplification tests for the diagnosis of tuberculosis. http://www.cdc.gov/tb/publications/guidelines/amplification_tests/default.htm. Accessed 14 Jan 2013

  83. WHO (2008) WHO library cataloguing-in-publication data: new laboratory diagnostic tools for tuberculosis control. http://www.finddiagnostics.org/resource-centre/reports_brochures/laboratory-diagnostic-tools-tuberculosis-control.html. Accessed 15 Jan 2013

  84. Kocagöz T, Yilmaz E, Ozkara S et al (1993) Detection of Mycobacterium tuberculosis in sputum samples by polymerase chain reaction using a simplified procedure. J Clin Microbiol 31:1435–1438

    PubMed Central  PubMed  Google Scholar 

  85. Chakravorty S, Pathak D, Dudeja M et al (2006) PCR amplification of shorter fragments from the devR (Rv3133c) gene significantly increases the sensitivity of tuberculosis diagnosis. FEMS Microbiol Lett 257:306–311

    PubMed  CAS  Google Scholar 

  86. Sarmiento OL, Weigle KA, Alexander J et al (2003) Assessment by meta-analysis of PCR for diagnosis of smear-negative pulmonary tuberculosis. J Clin Microbiol 41:3233–3240

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Greco S, Rulli M, Girardi E et al (2009) Diagnostic accuracy of in-house PCR for pulmonary tuberculosis in smear-positive patients: meta-analysis and metaregression. J Clin Microbiol 47:569–576

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Takahashi T, Tamura M, Takasu T (2012) The PCR-based diagnosis of central nervous system tuberculosis: up to date. Tuberculosis Res Treat 2012:831292

    Google Scholar 

  89. Cheng VCC, Yew WW, Yuen KY (2005) Molecular diagnostics in tuberculosis. Eur J Clin Microbiol Infect Dis Eur Soc Clin Microbiol 24:711–720

    CAS  Google Scholar 

  90. Pfyffer GE (1999) Nucleic acid amplification for mycobacterial diagnosis. J Infect 39:21–26

    PubMed  CAS  Google Scholar 

  91. Flores LL, Pai M, Colford JM Jr et al (2005) In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression. BMC Microbiol 5:55

    PubMed Central  PubMed  Google Scholar 

  92. Daley P, Thomas S, Pai M (2007) Nucleic acid amplification tests for the diagnosis of tuberculous lymphadenitis: a systematic review. Int J Tuberculosis Lung Dis J Int Union Tuberculosis Lung Dis 11:1166–1176

    CAS  Google Scholar 

  93. Palomino JC (2009) Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 56:103–111

    PubMed  CAS  Google Scholar 

  94. Chakravorty S, Sen MK, Tyagi JS (2005) Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol 43:4357–4362

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Chakravorty S, Tyagi JS (2005) Novel multipurpose methodology for detection of mycobacteria in pulmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. J Clin Microbiol 43:2697–2702

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Kumar M, Sharma S, Ram AB et al (2010) Efficient mycobacterial DNA extraction from clinical samples for early diagnosis of tuberculosis. Int J Tuberculosis Lung Dis J Int Union Tuberculosis Lung Dis 14:847–851

    CAS  Google Scholar 

  97. Pai M, Flores LL, Hubbard A et al (2004) Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: a systematic review and meta-analysis. BMC Infect Dis 4:6

    PubMed Central  PubMed  Google Scholar 

  98. Pai M, Flores LL, Pai N et al (2003) Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis 3:633–643

    PubMed  CAS  Google Scholar 

  99. Pai M, Ling DI (2008) Rapid diagnosis of extrapulmonary tuberculosis using nucleic acid amplification tests: what is the evidence? Future Microbiol 3:1–4

    PubMed  CAS  Google Scholar 

  100. Greco S, Girardi E, Navarra A et al (2006) Current evidence on diagnostic accuracy of commercially based nucleic acid amplification tests for the diagnosis of pulmonary tuberculosis. Thorax 61:783–790

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Parsons LM, Somoskövi A, Gutierrez C et al (2011) Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev 24:314–350

    PubMed Central  PubMed  Google Scholar 

  102. Lawn SD, Zumla AI (2012) Diagnosis of extrapulmonary tuberculosis using the Xpert(®) MTB/RIF assay. Expert Rev Anti Infect Ther 10:631–635

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Piersimoni C, Bornigia S, Gherardi G (2012) Performance of a commercial nucleic acid amplification test with extrapulmonary specimens for the diagnosis of tuberculosis. Eur J Clin Microbiol Infect Dis Eur Soc Clin Microbiol 31:287–293

    CAS  Google Scholar 

  104. Ginocchio CC (2011) Strengths and weaknesses of FDA-approved/cleared diagnostic devices for the molecular detection of respiratory pathogens. Clin Infect Dis Infect Dis Soc Am 52(Suppl 4):S312–S325

    Google Scholar 

  105. Piersimoni C, Scarparo C (2003) Relevance of commercial amplification methods for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol 41:5355–5365

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Neonakis IK, Spandidos DA, Petinaki E (2011) Use of loop-mediated isothermal amplification of DNA for the rapid detection of Mycobacterium tuberculosis in clinical specimens. Eur J Clin Microbiol Infect Dis Eur Soc Clin Microbiol 30:937–942

    CAS  Google Scholar 

  107. Ling DI, Flores LL, Riley LW et al (2008) Commercial nucleic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: meta-analysis and meta-regression. PLoS One 3:e1536

    PubMed Central  PubMed  Google Scholar 

  108. WHO (2010) WHO | Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. http://www.who.int/tb/publications/2010/978924599191/en/index.html. Accessed 15 Jan 2013

  109. O'Grady J, Maeurer M, Mwaba P et al (2011) New and improved diagnostics for detection of drug-resistant pulmonary tuberculosis. Curr Opin Pulmonary Med 17:134–141

    Google Scholar 

  110. Ling DI, Zwerling AA, Pai M (2008) GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J Eur Soc Clin Respir Physiol 32:1165–1174

    CAS  Google Scholar 

  111. Morgan M, Kalantri S, Flores L et al (2005) A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 5:62

    PubMed Central  PubMed  Google Scholar 

  112. Crudu V, Stratan E, Romancenco E et al (2012) First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J Clin Microbiol 50:1264–1269

    PubMed Central  PubMed  CAS  Google Scholar 

  113. WHO (2008) Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). www.who.int/tb/features_archive/policy_statement.pdf. Accessed 15 Jan 2013

  114. Lawn SD, Nicol MP (2011) Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 6:1067–1082

    PubMed Central  PubMed  Google Scholar 

  115. WHO (2010) Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB. http://www.who.int/tb/laboratory/roadmap_xpert_mtb-rif.pdf. Accessed 15 Jan 2013

  116. Helb D, Jones M, Story E et al (2010) Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48:229–237

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Boehme CC, Nicol MP, Nabeta P et al (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377:1495–1505

    PubMed Central  PubMed  Google Scholar 

  118. Scott LE, McCarthy K, Gous N et al (2011) Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: a prospective study. PLoS medicine 8:e1001061

    PubMed Central  PubMed  Google Scholar 

  119. Williams KJ, Ling CL, Jenkins C et al (2007) A paradigm for the molecular identification of Mycobacterium species in a routine diagnostic laboratory. J Med Microbiol 56:598–602

    PubMed  CAS  Google Scholar 

  120. Slany M, Pavlik I (2012) Molecular detection of nontuberculous mycobacteria: advantages and limits of a broad-range sequencing approach. J Mol Microbiol Biotechnol 22:268–276

    PubMed  CAS  Google Scholar 

  121. Altclas J, Lescano A, Salgueira C et al (2005) Multidrug-resistant tuberculosis in bone marrow transplant recipient. Transplant Infect Dis J Transplant Soc 7:45–46

    CAS  Google Scholar 

  122. Hummel M, Spiess B, Roder J et al (2009) Detection of Aspergillus DNA by a nested PCR assay is able to improve the diagnosis of invasive aspergillosis in paediatric patients. J Med Microbiol 58:1291–1297

    PubMed  CAS  Google Scholar 

  123. Scotter JM, Chambers ST (2005) Comparison of galactomannan detection, PCR-enzyme-linked immunosorbent assay, and real-time PCR for diagnosis of invasive aspergillosis in a neutropenic rat model and effect of caspofungin acetate. Clin Diagn Lab Immunol 12:1322–1327

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Kent P, Kubica G (1985) Public health microbiology: a guide for the level III laboratory. Centers for Disease Control, Atlanta, GA

    Google Scholar 

  125. Belisle JT, Mahafey SB, Preston J (2008) Isolation of Mycobacterium species genomic DNA. In: Parish T, Brown AC (eds) Mycobacteria protocols. Humana Press, Totowa, NJ, pp 1–13

    Google Scholar 

  126. Khan IUH, Yadav JS (2004) Development of a single-tube, cell lysis-based, genus-specific PCR method for rapid identification of mycobacteria: optimization of cell lysis, PCR primers and conditions, and restriction pattern analysis. J Clin Microbiol 42:453–457

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Eisenach KD, Cave MD, Bates JH et al (1990) Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161:977–981

    PubMed  CAS  Google Scholar 

  128. Schewe C, Goldmann T, Grosser M et al (2005) Inter-laboratory validation of PCR-based detection of Mycobacterium tuberculosis in formalin-fixed, paraffin-embedded tissues. Virchows Archiv Int J Pathol 447:573–585

    CAS  Google Scholar 

  129. Standards NCCL, Woods GL (2000) Susceptibility testing mycobacteria, nocardia, and other aerobic actinomycetes. Tentative standard. NCCLS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Yurdakul, P., Colakoglu, S. (2014). Molecular Methods for Detection of Invasive Fungal Infections and Mycobacteria and Their Clinical Significance in Hematopoietic Stem Cell Transplantation. In: Beksaç, M. (eds) Bone Marrow and Stem Cell Transplantation. Methods in Molecular Biology, vol 1109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9437-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9437-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9436-2

  • Online ISBN: 978-1-4614-9437-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics