Skip to main content

Genetic and Phenotypic Analyses of Petal Development in Arabidopsis

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1110))

Abstract

The link between gene regulation/function and organ shape (morphogenesis) is poorly understood and remains one of the major issues in developmental biology. Petals are attractive model organs for studying organogenesis mainly because they have a simple laminar structure with a small number of cell types. Moreover, because petals are dispensable for plant growth and reproduction, one can experimentally manipulate petal development and dissect the genetic mechanisms behind the changes without serious effects on plant viability. Here, we describe the methods used to study petal development at the molecular, cytological, and genetic level, and more specifically mitotic and post-mitotic growth control during petal morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2(8):755–767

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Pyke KA, Page AM (1998) Plastid ontogeny during petal development in Arabidopsis. Plant Physiol 116(2):797–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot 67(10):2922–2936

    Article  Google Scholar 

  4. Irish VF (1999) Petal and stamen development. Curr Top Dev Biol 41:133–161

    CAS  PubMed  Google Scholar 

  5. Noda K, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369(6482):661–664

    Article  CAS  PubMed  Google Scholar 

  6. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409(6819):525–529

    Article  CAS  PubMed  Google Scholar 

  7. Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61(6):1014–1028

    Article  CAS  PubMed  Google Scholar 

  8. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6(9):688–698

    Article  CAS  PubMed  Google Scholar 

  9. Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409(6819):469–471

    Article  CAS  PubMed  Google Scholar 

  10. Szecsi J, Joly C, Bordji K, Varaud E, Cock JM, Dumas C, Bendahmane M (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25(16):3912–3920

    Article  CAS  PubMed  Google Scholar 

  11. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16(5):1314–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zik M, Irish VF (2003) Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15(1):207–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125(9):1711–1721

    CAS  PubMed  Google Scholar 

  14. Brioudes F, Joly C, Szecsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60(6):1070–1080

    Article  CAS  PubMed  Google Scholar 

  15. Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci USA 107(37):16384–16389

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama N, Arroyo JM, Simorowski J, May B, Martienssen R, Irish VF (2005) Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. Plant Cell 17(9):2486–2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506

    Article  CAS  PubMed  Google Scholar 

  18. Varaud E, Brioudes F, Szecsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M (2011) AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23(3):973–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Breuninger H, Lenhard M (2010) Control of tissue and organ growth in plants. Curr Top Dev Biol 91:185–220

    CAS  PubMed  Google Scholar 

  21. Irish VF (2008) The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci 13(8):430–436

    Article  CAS  PubMed  Google Scholar 

  22. Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004) The role of JAGGED in shaping lateral organs. Development 131(5):1101–1110

    Article  CAS  PubMed  Google Scholar 

  23. Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15(9):1951–1961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97(2):942–947

    Article  CAS  PubMed  Google Scholar 

  25. Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13(6):843–856

    Article  CAS  PubMed  Google Scholar 

  26. Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M (2006) The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Curr Biol 16(3):272–279

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22(10):1331–1336

    Article  CAS  PubMed  Google Scholar 

  28. Samalova M, Brzobohaty B, Moore I (2005) pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J 41(6):919–935

    Article  CAS  PubMed  Google Scholar 

  29. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45(4):651–683

    Article  CAS  PubMed  Google Scholar 

  30. Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene assembly. Plant Physiol 145(4):1183–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Logemann E, Birkenbihl RP, Ulker B, Somssich IE (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  32. Eriksson S, Stransfeld L, Adamski NM, Breuninger H, Lenhard M (2010) KLUH/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Curr Biol 20(6):527–532

    Article  CAS  PubMed  Google Scholar 

  33. Sieburth LE, Drews GN, Meyerowitz EM (1998) Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125(21):4303–4312

    CAS  PubMed  Google Scholar 

  34. Stransfeld L, Eriksson S, Adamski NM, Breuninger H, Lenhard M (2010) KLUH/CYP78A5 promotes organ growth without affecting the size of the early primordium. Plant Signal Behav 5(8):982–984

    Article  PubMed Central  PubMed  Google Scholar 

  35. Irish VF, Yamamoto YT (1995) Conservation of floral homeotic gene function between Arabidopsis and antirrhinum. Plant Cell 7(10):1635–1644

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Marjanac G, De Paepe A, Peck I, Jacobs A, De Buck S, Depicker A (2008) Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 17(2):239–250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dali Ma for helpful discussion and for critical reading of this review. Work in our group is funded by the Agence Nationale de Recherche (ANR-09-BLAN-0006), by the Biology Department of the French National Institute for Agronomic Research (INRA), and by the Ecole Normale Supérieure de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bendahmane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Szécsi, J., Wippermann, B., Bendahmane, M. (2014). Genetic and Phenotypic Analyses of Petal Development in Arabidopsis . In: Riechmann, J., Wellmer, F. (eds) Flower Development. Methods in Molecular Biology, vol 1110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9408-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9408-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9407-2

  • Online ISBN: 978-1-4614-9408-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics