Skip to main content

Spinal Vascular Imaging: Technique

  • Living reference work entry
  • First Online:
Neurovascular Imaging

Abstract

In this chapter, the principal imaging techniques of vascular pathologies of the spine and spinal cord are described, including computed tomography angiography (CTA), magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and digital subtraction angiography (DSA) as well as the technical protocols, the different vascular patterns to recognize, and the clinical indications where these techniques can be applied.

MRI is the technique of choice for the first-line approach of vascular lesions and their follow-up. It is the only non-radiating technique that allows visualization of the spinal cord and spinal vessels. It also permits the differential diagnosis with other nonvascular diseases. Currently, DSA is used mainly for therapeutic purposes and for detailed analysis particularly in small vascular malformations. Finally, the advantages of each technique will be illustrated with clinical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Santillan A, Nacarino V, Greenberg E et al (2012) Vascular anatomy of the spinal cord. J Neurointerv Surg 4(1):67–74

    PubMed  Google Scholar 

  2. Thron AK (2008) Vascular anatomy of the spine and spinal cord. In: Hurst RW, Rosenwasser RH (eds) Interventional neuroradiology. Informa Healthcare, New York, pp 39–55

    Google Scholar 

  3. Lasjaunias P, Berenstein A, Ter Brugge K (2002) Clinical vascular anatomy and variations, Surgical neuroangiography. Springer, New York

    Google Scholar 

  4. Gailloud P (2013) The artery of von Haller: a constant anterior radiculomedullary artery at the upper thoracic level. Neurosurgery 73(6):1034–1043

    PubMed  Google Scholar 

  5. Skalski JH, Zembala M (2005) Albert Wojciech Adamkiewicz: the discoverer of the variable vascularity of the spinal cord. Ann Thorac Surg 80(5):1971–1975

    PubMed  Google Scholar 

  6. Koshino T, Murakami G, Morishita K et al (1999) Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 117(5):898–905

    CAS  PubMed  Google Scholar 

  7. Biglioli P, Roberto M, Cannata A et al (2004) Upper and lower spinal cord blood supply: the continuity of the anterior spinal artery and the relevance of the lumbar arteries. J Thorac Cardiovasc Surg 127(4):1188–1192

    PubMed  Google Scholar 

  8. Griepp RB, Ergin MA, Galla JD et al (1996) Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg 112(5):1202–1213; discussion 13–15

    CAS  PubMed  Google Scholar 

  9. Biglioli P, Spirito R, Roberto M et al (2000) The anterior spinal artery: the main arterial supply of the human spinal cord–a preliminary anatomic study. J Thorac Cardiovasc Surg 119(2):376–379

    CAS  PubMed  Google Scholar 

  10. Lasjaunias P, Berenstein A (1990) Functional vascular anatomy of the brain, spinal cord and spine, Surgical neuroangiography. Springer, New York

    Google Scholar 

  11. Bowen BC, DePrima S, Pattany PM et al (1996) MR angiography of normal intradural vessels of the thoracolumbar spine. AJNR Am J Neuroradiol 17(3):483–494

    CAS  PubMed  Google Scholar 

  12. Groen RJ, du Toit DF, Phillips FM et al (2004) Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty: a reappraisal of the vertebral venous system. Spine (Phila Pa 1976) 29(13):1465–1471

    Google Scholar 

  13. Bert S, Iyriboz AT, Barret F et al (1995) An angiographic study of spinal vascularization at the thoracic-lumbar level. J Neuroradiol 22(1):12–19

    CAS  PubMed  Google Scholar 

  14. Williams GM, Roseborough GS, Webb TH et al (2004) Preoperative selective intercostal angiography in patients undergoing thoracoabdominal aneurysm repair. J Vasc Surg 39(2):314–321

    PubMed  Google Scholar 

  15. Kieffer E, Fukui S, Chiras J et al (2002) Spinal cord arteriography: a safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg 35(2):262–268

    PubMed  Google Scholar 

  16. Jacobs MJ, Mess W, Mochtar B et al (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43(2):239–246

    PubMed  Google Scholar 

  17. Nair S, Gobin YP, Leng LZ et al (2013) Preoperative embolization of hypervascular thoracic, lumbar, and sacral spinal column tumors: technique and outcomes from a single center. Interv Neuroradiol 19(3):377–385

    PubMed Central  PubMed  Google Scholar 

  18. Chen J, Gailloud P (2011) Safety of spinal angiography: complication rate analysis in 302 diagnostic angiograms. Neurology 77(13):1235–1240

    PubMed  Google Scholar 

  19. Forbes G, Nichols DA, Jack CR Jr et al (1988) Complications of spinal cord arteriography: prospective assessment of risk for diagnostic procedures. Radiology 169(2):479–484

    CAS  PubMed  Google Scholar 

  20. Savader SJ, Williams GM, Trerotola SO et al (1993) Preoperative spinal artery localization and its relationship to postoperative neurologic complications. Radiology 189(1):165–171

    CAS  PubMed  Google Scholar 

  21. Heinemann MK, Brassel F, Herzog T et al (1998) The role of spinal angiography in operations on the thoracic aorta: myth or reality? Ann Thorac Surg 65(2):346–351

    CAS  PubMed  Google Scholar 

  22. Uotani K, Yamada N, Kono AK et al (2008) Preoperative visualization of the artery of Adamkiewicz by intra-arterial CT angiography. AJNR Am J Neuroradiol 29(2):314–318

    CAS  PubMed  Google Scholar 

  23. Takase K, Sawamura Y, Igarashi K et al (2002) Demonstration of the artery of Adamkiewicz at multi- detector row helical CT. Radiology 223(1):39–45

    PubMed  Google Scholar 

  24. Melissano G, Bertoglio L, Civelli V et al (2009) Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software OsiriX. Eur J Vasc Endovasc Surg 37(4):395–400

    CAS  PubMed  Google Scholar 

  25. Zhao SH, Logan L, Schraedley P et al (2009) Assessment of the anterior spinal artery and the artery of Adamkiewicz using multi-detector CT angiography. Chin Med J (Engl) 122(2):145–149

    Google Scholar 

  26. Yoshioka K, Niinuma H, Ogino Y et al (2006) Three-dimensional demonstration of the collateral circulation to the artery of Adamkiewicz with 16-row multislice computed tomography. Ann Thorac Surg 81(2):749

    PubMed  Google Scholar 

  27. Utsunomiya D, Yamashita Y, Okumura S et al (2008) Demonstration of the Adamkiewicz artery in patients with descending or thoracoabdominal aortic aneurysm: optimization of contrast-medium application for 64-detector-row CT angiography. Eur Radiol 18(11):2684–2690

    PubMed  Google Scholar 

  28. Kudo K, Terae S, Asano T et al (2003) Anterior spinal artery and artery of Adamkiewicz detected by using multi-detector row CT. AJNR Am J Neuroradiol 24(1):13–17

    PubMed  Google Scholar 

  29. Nojiri J, Matsumoto K, Kato A et al (2007) The Adamkiewicz artery: demonstration by intra-arterial computed tomographic angiography. Eur J Cardiothorac Surg 31(2):249–255

    PubMed  Google Scholar 

  30. Nakayama Y, Awai K, Yanaga Y et al (2008) Optimal contrast medium injection protocols for the depiction of the Adamkiewicz artery using 64-detector CT angiography. Clin Radiol 63(8):880–887

    CAS  PubMed  Google Scholar 

  31. Amako M, Yamamoto Y, Nakamura K et al (2011) Preoperative visualization of the artery of Adamkiewicz by dual-phase CT angiography in patients with aortic aneurysm. Kurume Med J 58(4):117–125

    PubMed  Google Scholar 

  32. Clarencon F, Di Maria F, Cormier E et al (2013) Comparison of intra-aortic computed tomography angiography to conventional angiography in the presurgical visualization of the Adamkiewicz artery: first results in patients with thoracoabdominal aortic aneurysms. Neuroradiology 55(11):1379–1387

    PubMed  Google Scholar 

  33. Nelson RC, Feuerlein S, Boll DT (2011) New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 5(5):286–292

    PubMed  Google Scholar 

  34. Nishida J, Kitagawa K, Nagata M et al (2014) Model-based iterative reconstruction for multi-detector row CT assessment of the Adamkiewicz artery. Radiology 270(1):282–291

    PubMed  Google Scholar 

  35. Machida H, Tanaka I, Fukui R et al (2013) Improved delineation of the anterior spinal artery with model-based iterative reconstruction in CT angiography: a clinical pilot study. AJR Am J Roentgenol 200(2):442–446

    PubMed  Google Scholar 

  36. Ou P, Schmit P, Layouss W et al (2007) CT angiography of the artery of Adamkiewicz with 64-section technology: first experience in children. AJNR Am J Neuroradiol 28(2):216–219

    CAS  PubMed  Google Scholar 

  37. Nijenhuis RJ, Jacobs MJ, Jaspers K et al (2007) Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. J Vasc Surg 45(4):677–685

    PubMed  Google Scholar 

  38. Boll DT, Bulow H, Blackham KA et al (2006) MDCT angiography of the spinal vasculature and the artery of Adamkiewicz. AJR Am J Roentgenol 187(4):1054–1060

    PubMed  Google Scholar 

  39. Yoshioka K, Niinuma H, Ohira A et al (2003) MR angiography and CT angiography of the artery of Adamkiewicz: noninvasive preoperative assessment of thoracoabdominal aortic aneurysm. Radiographics 23(5):1215–1225

    PubMed  Google Scholar 

  40. Murakami H, Kawahara N, Tomita K et al (2010) Does interruption of the artery of Adamkiewicz during total en bloc spondylectomy affect neurologic function? Spine (Phila Pa 1976) 35(22):E1187–E1192

    Google Scholar 

  41. Smit JW, Vielvoye GJ, Goslings BM (2000) Embolization for vertebral metastases of follicular thyroid carcinoma. J Clin Endocrinol Metab 85(3):989–994

    CAS  PubMed  Google Scholar 

  42. Court C, Noun Z, Gagey O et al (2000) Surgical treatment of metastases from thyroid cancer in the axial skeleton. A retrospective study of 18 cases. Acta Orthop Belg 66(4):345–352

    CAS  PubMed  Google Scholar 

  43. Prabhu VC, Bilsky MH, Jambhekar K et al (2003) Results of preoperative embolization for metastatic spinal neoplasms. J Neurosurg 98(2 Suppl):156–164

    PubMed  Google Scholar 

  44. Kobayashi K, Ozkan E, Tam A et al (2012) Preoperative embolization of spinal tumors: variables affecting intraoperative blood loss after embolization. Acta Radiol 53(8):935–942

    PubMed  Google Scholar 

  45. Wilson MA, Cooke DL, Ghodke B et al (2010) Retrospective analysis of preoperative embolization of spinal tumors. AJNR Am J Neuroradiol 31(4):656–660

    CAS  PubMed  Google Scholar 

  46. Robial N, Charles YP, Bogorin I et al (2012) Is preoperative embolization a prerequisite for spinal metastases surgical management? Orthop Traumatol Surg Res 98(5):536–542

    CAS  PubMed  Google Scholar 

  47. Thiex R, Harris MB, Sides C et al (2013) The role of preoperative transarterial embolization in spinal tumors. A large single-center experience. Spine J 13(2):141–149

    PubMed  Google Scholar 

  48. Jones KM, Gobin P, Liu A-H (2003) Embolisation of spinal tumors. Oper Tech Neurosurg 6(3):156–162

    Google Scholar 

  49. Smith TP, Gray L, Weinstein JN et al (1995) Preoperative transarterial embolization of spinal column neoplasms. J Vasc Interv Radiol 6(6):863–869

    CAS  PubMed  Google Scholar 

  50. Shi HB, Suh DC, Lee HK et al (1999) Preoperative transarterial embolization of spinal tumor: embolization techniques and results. AJNR Am J Neuroradiol 20(10):2009–2015

    CAS  PubMed  Google Scholar 

  51. O’Reilly GV, Kleefield J, Klein LA et al (1989) Embolization of solitary spinal metastases from renal cell carcinoma: alternative therapy for spinal cord or nerve root compression. Surg Neurol 31(4):268–271

    PubMed  Google Scholar 

  52. Djindjian R, Cophignon J, Rey A et al (1973) Superselective arteriographic embolization by the femoral route in neuroradiology. Study of 50 cases. II. Embolization in vertebromedullary pathology. Neuroradiology 6(3):132–142

    CAS  PubMed  Google Scholar 

  53. Estrera AL, Miller CC 3rd, Huynh TT et al (2001) Neurologic outcome after thoracic and thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 72(4):1225–1230; discussion 30–31

    CAS  PubMed  Google Scholar 

  54. Coselli JS, LeMaire SA, Miller CC 3rd et al (2000) Mortality and paraplegia after thoracoabdominal aortic aneurysm repair: a risk factor analysis. Ann Thorac Surg 69(2):409–414

    CAS  PubMed  Google Scholar 

  55. Griepp RB, Griepp EB (2007) Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg 83(2):S865–S869; discussion S90–S92

    PubMed  Google Scholar 

  56. Weigang E, Hartert M, Siegenthaler MP et al (2006) Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting. Ann Thorac Surg 82(5):1679–1687

    PubMed  Google Scholar 

  57. Amabile P, Grisoli D, Giorgi R et al (2008) Incidence and determinants of spinal cord ischaemia in stent-graft repair of the thoracic aorta. Eur J Vasc Endovasc Surg 35(4):455–461

    CAS  PubMed  Google Scholar 

  58. Fereshetian A, Kadir S, Kaufman SL et al (1989) Digital subtraction spinal cord angiography in patients undergoing thoracic aneurysm surgery. Cardiovasc Intervent Radiol 12(1):7–9

    CAS  PubMed  Google Scholar 

  59. Nijenhuis RJ, Jacobs MJ, Schurink GW et al (2007) Magnetic resonance angiography and neuromonitoring to assess spinal cord blood supply in thoracic and thoracoabdominal aortic aneurysm surgery. J Vasc Surg 45(1):71–77; discussion 77–78

    PubMed  Google Scholar 

  60. Etz CD, Halstead JC, Spielvogel D et al (2006) Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg 82(5):1670–1677

    PubMed  Google Scholar 

  61. Nakai M, Shimizu S, Ochi Y et al (2009) Thoracodorsal artery as a collateral source to the artery of Adamkiewicz after endovascular aneurysm repair for descending thoracic aortic aneurysm. Eur J Vasc Endovasc Surg 37(5):566–568

    CAS  PubMed  Google Scholar 

  62. Maliszewski M, Ladzinski P, Aleksandrowicz R et al (1999) Occlusion of radicular arteries – reasons, consequences and anastomotic substitution pathways. Spinal Cord 37(10):710–716

    CAS  PubMed  Google Scholar 

  63. von Tengg-Kobligk H, Bockler D, Jose TM et al (2007) Feeding arteries of the spinal cord at CT angiography before and after thoracic aortic endografting. J Endovasc Ther 14(5):639–649

    Google Scholar 

  64. Etz CD, Luehr M, Kari FA et al (2008) Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: does critical spinal cord ischemia occur postoperatively? J Thorac Cardiovasc Surg 135(2):324–330

    PubMed  Google Scholar 

  65. Vargas MI, Nguyen D, Viallon M et al (2010) Dynamic MR angiography (MRA) of spinal vascular diseases at 3 T. Eur Radiol 20(10):2491–2495. doi:10.1007/s00330-010-1815-6

    PubMed  Google Scholar 

  66. Wang D, Yang N, Zhang P et al (2013) The diagnosis of spinal dural arteriovenous fistulas. Spine. doi:10.1097/BRS.0b013e31828a38c4

    Google Scholar 

  67. Vargas MI, Delavelle J, Jlassi H et al (2008) Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 50(1):25–29

    PubMed  Google Scholar 

  68. Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30(4):639–648. doi:10.3174/ajnr.A1485

    CAS  PubMed  Google Scholar 

  69. Ide C, Gangi A, Rimmelin A et al (1996) Vertebral haemangiomas with spinal cord compression: the place of preoperative percutaneous vertebroplasty with methyl methacrylate. Neuroradiology 38(6):585–589

    CAS  PubMed  Google Scholar 

  70. Kharkar S, Shuck J, Conway J et al (2007) The natural history of conservatively managed symptomatic intramedullary spinal cord cavernomas. Neurosurgery 60(5):865–872. doi:10.1227/01.NEU.0000255437.36742.15; discussion 65–72

    PubMed  Google Scholar 

  71. Deutsch H, Jallo GI, Faktorovich A et al (2000) Spinal intramedullary cavernoma: clinical presentation and surgical outcome. J Neurosurg 93(1 Suppl):65–70

    CAS  PubMed  Google Scholar 

  72. Spetzger U, Gilsbach JM, Bertalanffy H (1995) Cavernous angiomas of the spinal cord clinical presentation, surgical strategy, and postoperative results. Acta Neurochir (Wien) 134(3–4):200–206

    CAS  Google Scholar 

  73. Babu R, Owens TR, Karikari IO et al (2013) Spinal cavernous and capillary hemangiomas in adults. Spine 38(7):E423–E430. doi:10.1097/BRS.0b013e318287fef7

    PubMed  Google Scholar 

  74. Bergametti F, Denier C, Labauge P et al (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51. doi:10.1086/426952

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Guzeloglu-Kayisli O, Amankulor NM, Voorhees J et al (2004) KRIT1/cerebral cavernous malformation 1 protein localizes to vascular endothelium, astrocytes, and pyramidal cells of the adult human cerebral cortex. Neurosurgery 54(4):943–949; discussion 49

    PubMed  Google Scholar 

  76. Labauge P, Brunereau L, Coubes P et al (2001) Appearance of new lesions in two nonfamilial cerebral cavernoma patients. Eur Neurol 45(2):83–88. doi:10.1159/000052100

    CAS  PubMed  Google Scholar 

  77. Krings T, Mull M, Gilsbach JM et al (2005) Spinal vascular malformations. Eur Radiol 15(2):267–278. doi:10.1007/s00330-004-2510-2

    PubMed  Google Scholar 

  78. Biondi A, Clemenceau S, Dormont D et al (2002) Intracranial extra-axial cavernous (HEM) angiomas: tumors or vascular malformations? J Neuroradiol 29(2):91–104

    CAS  PubMed  Google Scholar 

  79. Pechstein U, Zentner J, Van Roost D et al (1997) Surgical management of brain-stem cavernomas. Neurosurg Rev 20(2):87–93

    CAS  PubMed  Google Scholar 

  80. Pearl MS, Chen JX, Gregg L et al (2012) Angiographic detection and characterization of “cryptic venous anomalies” associated with spinal cord cavernous malformations using flat-panel catheter angiotomography. Neurosurgery 71(1 Suppl Operative):125–132

    PubMed  Google Scholar 

  81. Vargas MI, Delavelle J, Jlassi H et al (2008) Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 50(1):25–29. doi:10.1007/s00234-007-0309-y

    PubMed  Google Scholar 

  82. Rovira A, Rovira A, Capellades J et al (1999) Lumbar extradural hemangiomas: report of three cases. AJNR Am J Neuroradiol 20(1):27–31

    CAS  PubMed  Google Scholar 

  83. Hemalatha AL, Ravikumar T, Chamarthy NP et al (2013) A pure epidural spinal cavernous hemangioma – with an innocuous face but a perilous behaviour!! J Clin Diagn Res JCDR 7(7):1434–1435. doi:10.7860/JCDR/2013/6030.3159

    Google Scholar 

  84. Zhong W, Huang S, Chen H et al (2012) Pure spinal epidural cavernous hemangioma. Acta Neurochir (Wien) 154(4):739–745. doi:10.1007/s00701-012-1295-3

    Google Scholar 

  85. Shin JH, Lee HK, Rhim SC et al (2001) Spinal epidural cavernous hemangioma: MR findings. J Comput Assist Tomogr 25(2):257–261

    CAS  PubMed  Google Scholar 

  86. Aoyagi N, Kojima K, Kasai H (2003) Review of spinal epidural cavernous hemangioma. Neurol Med Chir 43(10):471–475; discussion 76

    Google Scholar 

  87. Hara K, Hidaka K (2006) Cavernous hemangioma growing continuously from the spinal epidural space into the paravertebral muscles: case report. No Shinkei Geka Neurol Surg 34(5):521–525

    Google Scholar 

  88. Hatiboglu MA, Iplikcioglu AC, Ozcan D (2006) Epidural spinal cavernous hemangioma. Neurol Med Chir 46(9):455–458

    Google Scholar 

  89. Kurose K, Kishi H, Sadatoh T (1989) Spinal epidural cavernous hemangioma. Case report. Neurol Med Chir 29(6):538–542

    CAS  Google Scholar 

  90. Minh NH (2005) Cervicothoracic spinal epidural cavernous hemangioma: case report and review of the literature. Surg Neurol 64(1):83–85. doi:10.1016/j.surneu.2004.10.030; discussion 85

    PubMed  Google Scholar 

  91. Padolecchia R, Acerbi G, Puglioli M et al (1998) Epidural spinal cavernous hemangioma. Spine 23(10):1136–1140

    CAS  PubMed  Google Scholar 

  92. Richardson RR, Cerullo LJ (1979) Spinal epidural cavernous hemangioma. Surg Neurol 12(3):266–268

    CAS  PubMed  Google Scholar 

  93. Rachinger J, Buslei R, Engelhorn T et al (2006) Intradural-extramedullary cavernous hemangioma of the left motor root C7 – case report and update of the literature. Zentralbl Neurochir 67(3):144–148. doi:10.1055/s-2006-933362

    CAS  PubMed  Google Scholar 

  94. Lefranc F, Baleriaux D, Brotchi J (2007) Intramedullary cavernomas: personal series of 24 cases. Neurochirurgie 53(2–3 Pt 2):203–207. doi:10.1016/j.neuchi.2007.02.009

    CAS  PubMed  Google Scholar 

  95. Liang JT, Bao YH, Zhang HQ et al (2011) Management and prognosis of symptomatic patients with intramedullary spinal cord cavernoma: clinical article. J Neurosurg Spine 15(4):447–456. doi:10.3171/2011.5.SPINE10735

    PubMed  Google Scholar 

  96. Imagama S, Ito Z, Wakao N et al (2011) Differentiation of localization of spinal hemangioblastomas based on imaging and pathological findings. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 20(8):1377–1384. doi:10.1007/s00586-011-1814-6

    Google Scholar 

  97. Browne TR, Adams RD, Roberson GH (1976) Hemangioblastoma of the spinal cord. Review and report of five cases. Arch Neurol 33(6):435–441

    CAS  PubMed  Google Scholar 

  98. Parsa AT, Lee J, Parney IF et al (2004) Spinal cord and intradural-extraparenchymal spinal tumors: current best care practices and strategies. J Neurooncol 69(1–3):291–318

    PubMed  Google Scholar 

  99. Mechtler LL, Nandigam K (2013) Spinal cord tumors: new views and future directions. Neurol Clin 31(1):241–268. doi:10.1016/j.ncl.2012.09.011

    PubMed  Google Scholar 

  100. Fox MW, Onofrio BM (1993) The natural history and management of symptomatic and asymptomatic vertebral hemangiomas. J Neurosurg 78(1):36–45. doi:10.3171/jns.1993.78.1.0036

    CAS  PubMed  Google Scholar 

  101. Jenny B, Radovanovic I, Haenggeli CA et al (2007) Association of multiple vertebral hemangiomas and severe paraparesis in a patient with a PTEN hamartoma tumor syndrome. Case report. J Neurosurg 107(4 Suppl):307–313. doi:10.3171/PED-07/10/307

    PubMed  Google Scholar 

  102. Si-jia G, Meng-wei Z, Xi-ping L et al (2009) The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Eur J Radiol 71(1):22–28

    PubMed  Google Scholar 

  103. Yamaguchi S, Nagayama T, Eguchi K et al (2010) Accuracy and pitfalls of multidetector-row computed tomography in detecting spinal dural arteriovenous fistulas. J Neurosurg Spine 12(3):243–248

    PubMed  Google Scholar 

  104. Thron A (2001) Spinal dural arteriovenous fistulas. Radiologe 41(11):955–960

    CAS  PubMed  Google Scholar 

  105. Krings T (2010) Vascular malformations of the spine and spinal cord: anatomy, classification, treatment. Klin Neuroradiol. doi:10.1007/s00062-010-9036-6

    Google Scholar 

  106. Kamiyama K, Endo S, Horie Y et al (1985) Neurofibromatosis associated with intra- and extracranial aneurysms and extracranial vertebral arteriovenous fistula. No Shinkei Geka Neurol Surg 13(8):875–880

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Vargas, M.I., Bing, F., Gariani, J., Dietemann, JL. (2014). Spinal Vascular Imaging: Technique. In: Saba, L., Raz, E. (eds) Neurovascular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9212-2_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9212-2_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9212-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics