Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Copper sulfate (CuSO4·5H2O) and sulfuric acid (H2SO4) are the primary constituents of the Acid copper sulfate bath [1]. The formulation of the bath is adjusted depending on the intended use, as given in Table 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dini JW, snyder DD (2010) Electrodeposition of copper in modern electroplating. In: Schlesinger M, Paunovic M (ed) Wiley, NewYork

    Google Scholar 

  2. Wagner C (1951) Theoretical analysis of the current density distribution in electrolytic cells. J Electrochem Soc 98:116–128

    Article  CAS  Google Scholar 

  3. Conway BE, Bockris J.O’M, Linton Ü (1956) Proton conductance and the existence of the H3 ion. J Chem Phys 24:834–850

    Google Scholar 

  4. Seiter H, Fischer H, Albert L (1960) Elektrochemish-morphologische studien zur erforschung des mechanismus der elektrokristallisation, fern vom anfangszustand. Electrochim Acta 2:97–120

    Article  CAS  Google Scholar 

  5. Mattsson E, O’ J, Bockris M (1959) Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulfate system. Trans Faraday Soc 55:1586–1601

    Article  Google Scholar 

  6. O’ J, Bockris M, Enyo M (1962) Mechanism of electrodeposition and dissolution processes of copper in aqueous solutions. Trans Faraday Soc 58:1187–1202

    Article  Google Scholar 

  7. Molodov AI, Markosyan GN, Losev VV (1972) Regularities of low-valency inter mediate accumulation during a step-wise electrode process. Electrochim Acta 17:701–721

    Article  CAS  Google Scholar 

  8. Molodov AI, Yanov LA, Markosyan GN, Losev VV (1977) Surface effects during cathodic copper deposition from methanolic and aqeous solutions. Extend abstracts of I.S.E meeting, Vazna 69:313

    Google Scholar 

  9. Peters D, Cruser S (1965) Cathodic chronopotentiometry of copper (I) and copper (II) in chloride media. J Electroanal Chem 9:27–40

    CAS  Google Scholar 

  10. Wan CC (1974) A study of electrochemical kinetics of copper deposition under pulsed current conditions. Columbia University, Dissertation

    Google Scholar 

  11. Burrows IR, Harrison JA, Thompson J (1975) The deposition of copper. Electroanal Chem 58:241–249

    Article  CAS  Google Scholar 

  12. Harrison JA, Sandbah DR, Stronach PJ (1979) The rate of deposition of copper, Zinc and Cadmium. Electrochim Acta 24:179–189

    Article  CAS  Google Scholar 

  13. Burrows IR, Dick KL, Harrison JA (1976) A comparison of the rate of copper deposition at mercury copper amalgam and copper metal. Electrochim Acta 21:81–84

    Article  CAS  Google Scholar 

  14. Glarum SH, Marshall JH (1981) An admittance study of the copper electrode. J Electrochem Soc 128:968–979

    Article  CAS  Google Scholar 

  15. Tindall GW, Bruckenstein S (1968) A ring-disk electrode study of the deposition and stripping of thin copper films at platinum in sulfuric acid. Anal Chem 40:1637–1640

    Article  CAS  Google Scholar 

  16. Tindall GW, Bruckenstein S (1968) A ring-disk electrode study of the electrochemical reduction of copper (II) in 0.2 M sulfuric acid on platinum. Anal Chem 40:1051–1054

    Article  CAS  Google Scholar 

  17. Tindall GW, Bruckenstein S (1968) Determination of heterogeneous equilibrium constants by chemical stripping at a ring disk electrode. Anal Chem 40:1402–1404

    Article  CAS  Google Scholar 

  18. Yokoi M, Konishi S, Hayashi T (1983) Mechanism of the electrodeposition and dissolution of copper in an acid copper sulfate bath. Denki Kagaku 51:310–315

    Google Scholar 

  19. Jenkins LH, Bertocci U (1965) On the equilibrium properties of single crystalline copper electrodes. J Electrochem Soc 112(5):517–520

    Article  CAS  Google Scholar 

  20. Itagaki M, Yamamoto H, Watanabe K (2000) Disproportional reaction of copper in chloride solution investigated by channel flow double. Zairyo-to-Kankyo (in Japanese) 49:546–552

    Google Scholar 

  21. Lamb VA (1969) Electroplating with current pulses in the microsecond range. Plating 56:909–913

    CAS  Google Scholar 

  22. Cheh HY, Linford HB, Wan CC (1977) A pplication of pulsed plating techniques to metal deposition—2 pulsed plating of copper. Plating 64:66–67

    CAS  Google Scholar 

  23. Hayashi T, Yokoi M (1979) The role of intermediate (Cu +) in the electrodeposition of copper from an acid copper sulfate bath under pulsed current electrolysis. Denki Kagaku 47(11):654–658

    Google Scholar 

  24. Tantavichet N, Pritzker MD (2003) Low- and high-frequency pulse current and pulse reverse plating of copper. J Electrochem Soc 150:C665–C677

    Article  CAS  Google Scholar 

  25. Trasatti S (1992) Electrified interfaces in physics, chemistry and biology. In Guidelli R (ed) Kluwer Academic Publishers, Dordrecht, p 245

    Google Scholar 

  26. Ehlers CB, Villegas I, Stickeny JL (1990) The surface chemistry of Cu (100) in HCl solutions as a function of potential: a study by LEED, Auger spectroscopy and depth profiling. J Electroanal Chem 284:403–412

    Article  CAS  Google Scholar 

  27. Vogt MR, Lachenwitzer A, Magnussen OM, Behm RJ (1998) In-situ STM study of the initial stages of corrosion of Cu (100) electrodes in sulfuric and hydrochloric acid solution. Surf Sci 399:49–69

    Article  CAS  Google Scholar 

  28. Moffat TP, Ou Yang LY (2010) Accelerator surface phase associated with super conformal Cu electrodeposition. J Electrochem Soc 157(4):D228–D241

    Article  CAS  Google Scholar 

  29. Li WH, Wang Y, Ye JH, Li SFY (2001) In situ STM study of chloride adsorption on Cu (110) electrode in hydrochloric acid aqueous solution. J Phys Chem B 105:1829–1833

    Article  CAS  Google Scholar 

  30. Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) Chloride ion catalysis of the copper deposition reaction. J Electrochem Soc 142(6):L87–L89

    Google Scholar 

  31. Itagaki M, Tagaki M, Watanabe K (1996) Study of dissolution mechanism of copper in perchloric acid solution containing NaCl by channel flow double electrode and electrochemical quartz crystal microbalance. Corros Sci 38:1109–1125

    Article  CAS  Google Scholar 

  32. Lee HP, Nobe K (1986) Kinetics and mechanisms of Cu electrodissolution in chloride media. J Electrochem Soc 133:2035–2043

    Google Scholar 

  33. Pangarov NA (1965) Preferred orientations in electro-deposited metals. J Electroanal Chem 9:70–85

    CAS  Google Scholar 

  34. Itoh S, Yamazoe N, Seiyama T (1977) Electrocrystalization of various metals onto copper single crystal substrates. Surf Techn 5:27–42

    Article  CAS  Google Scholar 

  35. Damjanovic A, Setty TC, Bockris JO’M (1966) Effect of crystal plane on the mechanism and the kinetics of copper electrocrystallization. J Electrochem Soc 113:429–440

    Google Scholar 

  36. Okada G, Yamazoe N, Seiyama T (1976) Polarization measurement of copper deposition on copper single crystal electrodes by the galvanostatic double pulse method, Denki Kagaku (in Japanese) 44:413–417

    Google Scholar 

  37. Wilson KS, Rogers JA (1996). Tec Proc Amer Electroplaters Soc 51:92–95

    Google Scholar 

  38. Yokoi M, Konishi S, Hayashi T (1983) Effect of Cl ions on the crystallization process in acid copper sulfate baths. Denki Kagaku 51:416

    Google Scholar 

  39. 74th CRC Handbook of Chemistry and Physics (1992) Solubility product constants. CRC Press Inc., Boca Raton 8–49

    Google Scholar 

  40. Soares DM, Wasle S, Weil KG, Doblhofer K (2002) Copper ion reduction catalyzed by chloride ions. J Electroanal Chem 532:353–358

    Article  CAS  Google Scholar 

  41. Yokoi M, Konishi S, Hayashi T (1983) Mechanism of the electrodeposition and dissolution of copper in an acid copper sulfate bath IV. Acceleration mechanism in the presence of Cl ions, Denki Kagaku 51(6):460–464

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yokoi, M. (2014). Copper Electrodepositon. In: Kondo, K., Akolkar, R., Barkey, D., Yokoi, M. (eds) Copper Electrodeposition for Nanofabrication of Electronics Devices. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9176-7_1

Download citation

Publish with us

Policies and ethics