Skip to main content

Defining the Starting Dose: Should It Be mg/kg, mg/m2, or Fixed?

  • Chapter
  • First Online:
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Background: Traditional cytotoxic drugs are characterized by a narrow therapeutic window and significant interpatient variability in therapeutic and toxic effects. The new targeted therapies have a larger therapeutic window and some have different drug clearance mechanisms. Objective: To provide an insight into history, rationales, and limitations of current dosing methods in traditional cytotoxic drugs and new targeted therapies and to suggest a practical framework for dose calculation and a basis for future research and clinical studies. Methods: Review of relevant literature related to dose calculation of anticancer drugs. Results: Body surface area (BSA) or weight-based dosing and fixed dosing fail to standardize systemic anticancer drug exposure between individuals. Strategies using clinical parameters, genotype and phenotype markers, and therapeutic drug monitoring all have potential and each has a role for specific drugs. However, no one method is a practical dose calculation strategy for many or all drugs. Neither body size nor fixed dosing alone can be used for currently available drugs. Conclusion: Dosing strategies for anticancer drugs should be individualized according to elimination mechanisms and individual patient characteristics. Ways to determine these factors require further investigation and should be a component of early phase studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker RJ, Kozoll DD, Meyer KA (1957) The use of surface area as a basis for establishing normal blood volume. Surg Gynecol Obstet 104:183–189

    CAS  PubMed  Google Scholar 

  2. Baselga J, Carbonell X, Castaneda-Soto NJ et al (2005) Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23:2162–2171

    CAS  PubMed  Google Scholar 

  3. Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109:170–179

    CAS  PubMed  Google Scholar 

  4. Bello CL, Sherman L, Zhou J et al (2006) Effect of food on the pharmacokinetics of sunitinib malate (SU11248), a multi-targeted receptor tyrosine kinase inhibitor: results from a phase I study in healthy subjects. Anticancer Drugs 17:353–358

    CAS  PubMed  Google Scholar 

  5. Bence AK, Anderson EB, Halepota MA et al (2005) Phase I pharmacokinetic studies evaluating single and multiple doses of oral GW572016, a dual EGFR-ErbB2 inhibitor, in healthy subjects. Invest New Drugs 23:39–49

    CAS  PubMed  Google Scholar 

  6. Britten CD, Kabbinavar F, Hecht JR et al (2008) A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol 61:515–524

    CAS  PubMed  Google Scholar 

  7. Bruno R, Hille D, Riva A et al (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 16:187–196

    CAS  PubMed  Google Scholar 

  8. Bruno R, Vivier N, Vergniol JC et al (1996) A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J Pharmacokinet Biopharm 24:153–172

    CAS  PubMed  Google Scholar 

  9. Bruno R, Washington CB, Lu JF et al (2005) Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol 56:361–369

    CAS  PubMed  Google Scholar 

  10. Burger H, Nooter K (2004) Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle 3:1502–1505

    CAS  PubMed  Google Scholar 

  11. Burris HA 3rd, Hurwitz HI, Dees EC et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23:5305–5313

    CAS  PubMed  Google Scholar 

  12. Calvert AH, Newell DR, Gumbrell LA et al (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7:1748–1756

    CAS  PubMed  Google Scholar 

  13. Caraco Y, Zylber-Katz E, Berry EM et al (1995) Antipyrine disposition in obesity: evidence for negligible effect of obesity on hepatic oxidative metabolism. Eur J Clin Pharmacol 47:525–530

    CAS  PubMed  Google Scholar 

  14. Cheymol G (1993) Clinical pharmacokinetics of drugs in obesity. An update. Clin Pharmacokinet 25:103–114

    CAS  PubMed  Google Scholar 

  15. Colleoni M, Li S, Gelber RD et al (2005) Relation between chemotherapy dose, oestrogen receptor expression, and body-mass index. Lancet 366:1108–1110

    CAS  PubMed  Google Scholar 

  16. Crawford JD, Terry ME, Rourke GM (1950) Simplification of drug dosage calculation by application of the surface area principle. Pediatrics 5:783–790

    CAS  PubMed  Google Scholar 

  17. de Jong FA, Mathijssen RH, Xie R et al (2004) Flat-fixed dosing of irinotecan: influence on pharmacokinetic and pharmacodynamic variability. Clin Cancer Res 10:4068–4071

    PubMed  Google Scholar 

  18. de Jongh FE, Verweij J, Loos WJ et al (2001) Body-surface area-based dosing does not increase accuracy of predicting cisplatin exposure. J Clin Oncol 19:3733–3739

    PubMed  Google Scholar 

  19. Delbaldo C, Chatelut E, Re M et al (2006) Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res 12:6073–6078

    CAS  PubMed  Google Scholar 

  20. Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338

    CAS  PubMed  Google Scholar 

  21. Di Maio M, Gridelli C, Gallo C et al (2005) Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: a pooled analysis of three randomised trials. Lancet Oncol 6:669–677

    PubMed  Google Scholar 

  22. Dirks NL, Nolting A, Kovar A et al (2008) Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol 48:267–278

    CAS  PubMed  Google Scholar 

  23. Dobbs NA, Twelves CJ (1998) What is the effect of adjusting epirubicin doses for body surface area? Br J Cancer 78:662–666

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Dooley MJ, Poole SG (2000) Poor correlation between body surface area and glomerular filtration rate. Cancer Chemother Pharmacol 46:523–526

    CAS  PubMed  Google Scholar 

  25. Druker BJ, Lydon NB (2000) Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105:3–7

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    CAS  PubMed  Google Scholar 

  27. DuBois D (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    CAS  Google Scholar 

  28. Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    CAS  PubMed  Google Scholar 

  29. Fleming RA, Eldridge RM, Johnson CE et al (1991) Disposition of high-dose methotrexate in an obese cancer patient. Cancer 68:1247–1250

    CAS  PubMed  Google Scholar 

  30. Fracasso PM, Burris H 3rd, Arquette MA et al (2007) A phase 1 escalating single-dose and weekly fixed-dose study of cetuximab: pharmacokinetic and pharmacodynamic rationale for dosing. Clin Cancer Res 13:986–993

    CAS  PubMed  Google Scholar 

  31. Freireich EJ, Gehan EA, Rall DP et al (1966) Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep 50:219–244

    CAS  PubMed  Google Scholar 

  32. Gamelin E, Boisdron-Celle M, Delva R et al (1998) Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J Clin Oncol 16:1470–1478

    CAS  PubMed  Google Scholar 

  33. Gamelin E, Boisdron-Celle M, Guerin-Meyer V et al (1999) Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: a potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol 17:1105

    CAS  PubMed  Google Scholar 

  34. Gamelin E, Delva R, Jacob J et al (2008) Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 26:2099–2105

    CAS  PubMed  Google Scholar 

  35. Gamelin EC, Danquechin-Dorval EM, Dumesnil YF et al (1996) Relationship between 5-fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer 77:441–451

    CAS  PubMed  Google Scholar 

  36. Gao B, Klumpen HJ, Gurney H (2008) Dose calculation of anticancer drugs. Expert Opin Drug Metab Toxicol 4:1307–1319

    CAS  PubMed  Google Scholar 

  37. Gianni L, Kearns CM, Giani A et al (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    CAS  PubMed  Google Scholar 

  38. Gibbons J, Egorin MJ, Ramanathan RK et al (2008) Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of renal dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 26:570–576

    CAS  PubMed  Google Scholar 

  39. Gibbs JP, Gooley T, Corneau B et al (1999) The impact of obesity and disease on busulfan oral clearance in adults. Blood 93:4436–4440

    CAS  PubMed  Google Scholar 

  40. Goldsmith MA, Slavik M, Carter SK (1975) Quantitative prediction of drug toxicity in humans from toxicology in small and large animals. Cancer Res 35:1354–1364

    CAS  PubMed  Google Scholar 

  41. Graf N, Winkler K, Betlemovic M et al (1994) Methotrexate pharmacokinetics and prognosis in osteosarcoma. J Clin Oncol 12:1443–1451

    CAS  PubMed  Google Scholar 

  42. Griggs JJ, Sorbero ME, Lyman GH (2005) Undertreatment of obese women receiving breast cancer chemotherapy. Arch Intern Med 165:1267–1273

    PubMed  Google Scholar 

  43. Grochow LB, Baraldi C, Noe D (1990) Is dose normalization to weight or body surface area useful in adults? J Natl Cancer Inst 82:323–325

    CAS  PubMed  Google Scholar 

  44. Gurney H (1996) Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol 14:2590–2611

    CAS  PubMed  Google Scholar 

  45. Gurney H, Ackland S, Gebski V et al (1998) Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body-surface area for dose calculation. J Clin Oncol 16(7):2299–2304

    CAS  PubMed  Google Scholar 

  46. Gurney H (2001) Determining the drug elimination phenotype: hepatic sestamibi scan and midazolam clearance as in vivo tests for drug metabolism and biliary elimination. Proc Am Soc Clin Oncol 20:abs 305

    Google Scholar 

  47. Gurney H (2005) I don’t underdose my patients…do I? Lancet Oncol 6:637–638

    PubMed  Google Scholar 

  48. Gurney H, Shaw R (2007) Obesity in dose calculation: a mouse or an elephant? J Clin Oncol 25:4703–4704

    PubMed  Google Scholar 

  49. Gurney H, Wong M, Balleine RL et al (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82:33–40

    CAS  PubMed  Google Scholar 

  50. Hammond LA, Eckardt JR, Baker SD et al (1999) Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J Clin Oncol 17:2604–2613

    CAS  PubMed  Google Scholar 

  51. Hidalgo M, Bloedow D (2003) Pharmacokinetics and pharmacodynamics: maximizing the clinical potential of Erlotinib (Tarceva). Semin Oncol 30:25–33

    CAS  PubMed  Google Scholar 

  52. Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277

    CAS  PubMed  Google Scholar 

  53. Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9:576–586

    CAS  PubMed  Google Scholar 

  54. Houk BE, Bello CL, Kang D et al (2009) A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res 15:2497–2506

    CAS  PubMed  Google Scholar 

  55. Houk BE, Bello CL, Poland B et al (2009) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66:357–371

    PubMed  Google Scholar 

  56. Huizing MT, Vermorken JB, Rosing H et al (1995) Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: a European Cancer Centre (ECC) trial. Ann Oncol 6:699–704

    CAS  PubMed  Google Scholar 

  57. Hunt CM, Westerkam WR, Stave GM (1992) Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 44:275–283

    CAS  PubMed  Google Scholar 

  58. Innocenti F, Iyer L, Ratain MJ (2000) Pharmacogenetics: a tool for individualizing antineoplastic therapy. Clin Pharmacokinet 39:315–325

    CAS  PubMed  Google Scholar 

  59. Innocenti F, Kroetz DL, Schuetz E et al (2009) Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27:2604–2614

    CAS  PubMed  Google Scholar 

  60. Jen JF, Cutler DL, Pai SM et al (2000) Population pharmacokinetics of temozolomide in cancer patients. Pharm Res 17:1284–1289

    CAS  PubMed  Google Scholar 

  61. Jenkins P, Elyan S, Freeman S (2007) Obesity is not associated with increased myelosuppression in patients receiving chemotherapy for breast cancer. Eur J Cancer 43:544–548

    CAS  PubMed  Google Scholar 

  62. Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55:379–386

    CAS  PubMed  Google Scholar 

  63. Kawaguchi T, Hamada A, Hirayama C et al (2009) Relationship between an effective dose of imatinib, body surface area, and trough drug levels in patients with chronic myeloid leukemia. Int J Hematol 89:642–648

    CAS  PubMed  Google Scholar 

  64. Kiyotani K, Mushiroda T, Imamura CK et al (2010) Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28:1287–1293

    CAS  PubMed  Google Scholar 

  65. le Coutre P, Kreuzer KA, Pursche S et al (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53:313–323

    PubMed  Google Scholar 

  66. le Coutre P, Mologni L, Cleris L et al (1999) In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91:163–168

    PubMed  Google Scholar 

  67. Leyland-Jones B, Gelmon K, Ayoub JP et al (2003) Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol 21:3965–3971

    CAS  PubMed  Google Scholar 

  68. Li J, Brahmer J, Messersmith W et al (2006) Binding of gefitinib, an inhibitor of epidermal growth factor receptor-tyrosine kinase, to plasma proteins and blood cells: in vitro and in cancer patients. Invest New Drugs 24:291–297

    PubMed  Google Scholar 

  69. Lind MJ, Margison JM, Cerny T et al (1989) Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 25:139–142

    CAS  PubMed  Google Scholar 

  70. Loos WJ, de Jongh FE, Sparreboom A et al (2006) Evaluation of an alternate dosing strategy for cisplatin in patients with extreme body surface area values. J Clin Oncol 24:1499–1506

    CAS  PubMed  Google Scholar 

  71. Loos WJ, Gelderblom H, Sparreboom A et al (2000) Inter- and intrapatient variability in oral topotecan pharmacokinetics: implications for body-surface area dosage regimens. Clin Cancer Res 6:2685–2689

    CAS  PubMed  Google Scholar 

  72. Lu JF, Bruno R, Eppler S et al (2008) Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 62:779–786

    CAS  PubMed  Google Scholar 

  73. Lu JF, Eppler SM, Wolf J et al (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 80:136–145

    CAS  PubMed  Google Scholar 

  74. Madden T, Sunderland M, Santana VM et al (1992) The pharmacokinetics of high-dose carboplatin in pediatric patients with cancer. Clin Pharmacol Ther 51:701–707

    CAS  PubMed  Google Scholar 

  75. Maloney DG, Grillo-Lopez AJ, Bodkin DJ et al (1997) IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol 15:3266–3274

    CAS  PubMed  Google Scholar 

  76. Mathijssen RH, Verweij J, de Jonge MJ et al (2002) Impact of body-size measures on irinotecan clearance: alternative dosing recommendations. J Clin Oncol 20:81–87

    CAS  PubMed  Google Scholar 

  77. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    CAS  PubMed  Google Scholar 

  78. Miller AA, Rosner GL, Egorin MJ et al (2004) Prospective evaluation of body surface area as a determinant of paclitaxel pharmacokinetics and pharmacodynamics in women with solid tumors: Cancer and Leukemia Group B Study 9763. Clin Cancer Res 10:8325–8331

    CAS  PubMed  Google Scholar 

  79. Millward MJ, Newell DR, Yuen K et al (1995) Pharmacokinetics and pharmacodynamics of prolonged oral etoposide in women with metastatic breast cancer. Cancer Chemother Pharmacol 37:161–167

    CAS  PubMed  Google Scholar 

  80. Miya T, Goya T, Fujii H et al (2001) Factors affecting the pharmacokinetics of CPT-11: the body mass index, age and sex are independent predictors of pharmacokinetic parameters of CPT-11. Invest New Drugs 19:61–67

    CAS  PubMed  Google Scholar 

  81. Miya T, Goya T, Yanagida O et al (1998) The influence of relative body weight on toxicity of combination chemotherapy with cisplatin and etoposide. Cancer Chemother Pharmacol 42:386–390

    CAS  PubMed  Google Scholar 

  82. Moore MJ, Erlichman C (1987) Therapeutic drug monitoring in oncology. Problems and potential in antineoplastic therapy. Clin Pharmacokinet 13:205–227

    CAS  PubMed  Google Scholar 

  83. Morgan DJ, Bray KM (1994) Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet 26:292–307

    CAS  PubMed  Google Scholar 

  84. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    CAS  PubMed  Google Scholar 

  85. Mross K, Hollander N, Frost A et al (2006) PAC fixed dose: pharmacokinetics of a 1-hour paclitaxel infusion and comparison to BSA-normalized drug dosing. Onkologie 29:444–450

    CAS  PubMed  Google Scholar 

  86. Murry DJ, Oermann CM, Ou CN et al (1999) Pharmacokinetics of ibuprofen in patients with cystic fibrosis. Pharmacotherapy 19:340–345

    CAS  PubMed  Google Scholar 

  87. Nawaratne S, Brien JE, Seeman E et al (1998) Relationships among liver and kidney volumes, lean body mass and drug clearance. Br J Clin Pharmacol 46:447–452

    CAS  PubMed  Google Scholar 

  88. Newsome BW, Ernstoff MS (2008) The clinical pharmacology of therapeutic monoclonal antibodies in the treatment of malignancy; have the magic bullets arrived? Br J Clin Pharmacol 66:6–19

    CAS  PubMed  Google Scholar 

  89. Ng CM, Bruno R, Combs D et al (2005) Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol 45:792–801

    CAS  PubMed  Google Scholar 

  90. Nguyen L, Chatelut E, Chevreau C et al (1998) Population pharmacokinetics of total and unbound etoposide. Cancer Chemother Pharmacol 41:125–132

    CAS  PubMed  Google Scholar 

  91. Nguyen L, Tranchand B, Puozzo C et al (2002) Population pharmacokinetics model and limited sampling strategy for intravenous vinorelbine derived from phase I clinical trials. Br J Clin Pharmacol 53:459–468

    CAS  PubMed  Google Scholar 

  92. Nikolova Z, Peng B, Hubert M et al (2004) Bioequivalence, safety, and tolerability of imatinib tablets compared with capsules. Cancer Chemother Pharmacol 53:433–438

    CAS  PubMed  Google Scholar 

  93. Partridge AH, Avorn J, Wang PS et al (2002) Adherence to therapy with oral antineoplastic agents. J Natl Cancer Inst 94:652–661

    PubMed  Google Scholar 

  94. Pearson AD, Amineddine HA, Yule M et al (1991) The influence of serum methotrexate concentrations and drug dosage on outcome in childhood acute lymphoblastic leukaemia. Br J Cancer 64:169–173

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942

    CAS  PubMed  Google Scholar 

  96. Picard S, Titier K, Etienne G et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109:3496–3499

    CAS  PubMed  Google Scholar 

  97. Pinkel D (1958) The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res 18:853–856

    CAS  PubMed  Google Scholar 

  98. Powis G, Reece P, Ahmann DL et al (1987) Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 20:219–222

    CAS  PubMed  Google Scholar 

  99. Ratain MJ (1998) Body-surface area as a basis for dosing of anticancer agents: science, myth, or habit? J Clin Oncol 16:2297–2298

    CAS  PubMed  Google Scholar 

  100. Ratain MJ, Cohen EE (2007) The value meal: how to save $1,700 per month or more on lapatinib. J Clin Oncol 25:3397–3398

    PubMed  Google Scholar 

  101. Reilly JJ, Workman P (1993) Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile? A review of theoretical and practical considerations. Cancer Chemother Pharmacol 32:411–418

    CAS  PubMed  Google Scholar 

  102. Rivory LP, Slaviero K, Seale JP et al (2000) Optimizing the erythromycin breath test for use in cancer patients. Clin Cancer Res 6:3480–3485

    CAS  PubMed  Google Scholar 

  103. Rixe O, Billemont B, Izzedine H (2007) Hypertension as a predictive factor of Sunitinib activity. Ann Oncol 18:1117

    CAS  PubMed  Google Scholar 

  104. Rodvold KA, Rushing DA, Tewksbury DA (1988) Doxorubicin clearance in the obese. J Clin Oncol 6:1321–1327

    CAS  PubMed  Google Scholar 

  105. Roland M (1994) Clinical pharmacokinetics. Concepts and applications, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  106. Rosner GL, Hargis JB, Hollis DR et al (1996) Relationship between toxicity and obesity in women receiving adjuvant chemotherapy for breast cancer: results from cancer and leukemia group B study 8541. J Clin Oncol 14:3000–3008

    CAS  PubMed  Google Scholar 

  107. Rothenberg ML, Kuhn JG, Schaaf LJ et al (2001) Phase I dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann Oncol 12:1631–1641

    CAS  PubMed  Google Scholar 

  108. Sakai M, Miyazaki Y, Matsuo E et al (2009) Long-term efficacy of imatinib in a practical setting is correlated with imatinib trough concentration that is influenced by body size: a report by the Nagasaki CML Study Group. Int J Hematol 89:319–325

    CAS  PubMed  Google Scholar 

  109. Sam WJ, Aw M, Quak SH et al (2000) Population pharmacokinetics of tacrolimus in Asian paediatric liver transplant patients. Br J Clin Pharmacol 50:531–541

    CAS  PubMed  Google Scholar 

  110. Schnegg M, Lauterburg BH (1986) Quantitative liver function in the elderly assessed by galactose elimination capacity, aminopyrine demethylation and caffeine clearance. J Hepatol 3:164–171

    CAS  PubMed  Google Scholar 

  111. Sharma R, Rivory L, Beale P et al (2006) A phase II study of fixed-dose capecitabine and assessment of predictors of toxicity in patients with advanced/metastatic colorectal cancer. Br J Cancer 94:964–968

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Singh N, Kumar L, Meena R et al (2009) Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol 65(6):545–549

    CAS  PubMed  Google Scholar 

  113. Smith HW (1951) The kidney, structure and henobar in health and disease. Oxford University Press, New York

    Google Scholar 

  114. Smorenburg CH, Sparreboom A, Bontenbal M et al (2003) Randomized cross-over evaluation of body-surface area-based dosing versus flat-fixed dosing of paclitaxel. J Clin Oncol 21:197–202

    CAS  PubMed  Google Scholar 

  115. Sohn SK, Moon JH, Cho YY et al (2007) Efficacy of dose escalation of imatinib mesylate in patients with cytogenetic or hematologic resistance. Leuk Lymphoma 48:1659–1661

    CAS  PubMed  Google Scholar 

  116. Soulieres D (2003) Identifying predictive and surrogate markers of erlotinib antitumor activity other than rash. Oncology (Williston Park) 17:29–33

    Google Scholar 

  117. Soulieres D, Senzer NN, Vokes EE et al (2004) Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 22:77–85

    CAS  PubMed  Google Scholar 

  118. Sparreboom A, Wolff AC, Mathijssen RH et al (2007) Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol 25:4707–4713

    CAS  PubMed  Google Scholar 

  119. Stoehlmacher J, Park DJ, Zhang W et al (2002) Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J Natl Cancer Inst 94:936–942

    CAS  PubMed  Google Scholar 

  120. Strumberg D, Richly H, Hilger RA et al (2005) Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23:965–972

    CAS  PubMed  Google Scholar 

  121. Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11:81–88

    CAS  PubMed  Google Scholar 

  122. Tanaka C, Yin OQ, Sethuraman V et al (2010) Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 87:197–203

    CAS  PubMed  Google Scholar 

  123. Thomas F, Rochaix P, White-Koning M et al (2009) Population pharmacokinetics of erlotinib and its pharmacokinetic/pharmacodynamic relationships in head and neck squamous cell carcinoma. Eur J Cancer 45:2316–2323

    CAS  PubMed  Google Scholar 

  124. Tjuljandin SA, Doig RG, Sobol MM et al (1990) Pharmacokinetics and toxicity of two schedules of high dose epirubicin. Cancer Res 50:5095–5101

    CAS  PubMed  Google Scholar 

  125. Tobinai K, Igarashi T, Itoh K et al (2004) Japanese multicenter phase II and pharmacokinetic study of rituximab in relapsed or refractory patients with aggressive B-cell lymphoma. Ann Oncol 15:821–830

    CAS  PubMed  Google Scholar 

  126. Toffoli G, Cecchin E, Gasparini G et al (2010) Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol 28:866–871

    CAS  PubMed  Google Scholar 

  127. Touw DJ, Graafland O, Cranendonk A et al (2000) Clinical pharmacokinetics of phenobarbital in neonates. Eur J Pharm Sci 12:111–116

    CAS  PubMed  Google Scholar 

  128. Townsley CA, Major P, Siu LL et al (2006) Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer. Br J Cancer 94:1136–1143

    CAS  PubMed Central  PubMed  Google Scholar 

  129. van der Gaast A, Vlastuin M, Kok TC et al (1992) What is the optimal dose and duration of treatment with etoposide? II. Comparative pharmacokinetic study of three schedules: 1 x 100 mg, 2 x 50 mg, and 4 x 25 mg of oral etoposide daily for 21 days. Semin Oncol 19:8–12

    PubMed  Google Scholar 

  130. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706

    PubMed  Google Scholar 

  131. van Erp NP, Eechoute K, van der Veldt AA et al (2009) Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 27:4406–4412

    PubMed  Google Scholar 

  132. Verweij J, Casali PG, Zalcberg J et al (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364:1127–1134

    CAS  PubMed  Google Scholar 

  133. Wacker B, Nagrani T, Weinberg J et al (2007) Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res 13:3913–3921

    CAS  PubMed  Google Scholar 

  134. Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907

    CAS  PubMed  Google Scholar 

  135. Widmer N, Decosterd LA, Csajka C et al (2006) Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br J Clin Pharmacol 62:97–112

    CAS  PubMed  Google Scholar 

  136. Wolfrom C, Hepp R, Hartmann R et al (1990) Pharmacokinetic study of methotrexate, folinic acid and their serum metabolites in children treated with high-dose methotrexate and leucovorin rescue. Eur J Clin Pharmacol 39:377–383

    CAS  PubMed  Google Scholar 

  137. Wong M, Balleine RL, Blair EY et al (2006) Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J Clin Oncol 24(16):2448–2455

    CAS  PubMed  Google Scholar 

  138. Xuan D, Lu JF, Nicolau DP et al (2000) Population pharmacokinetics of tobramycin in hospitalized patients receiving once-daily dosing regimen. Int J Antimicrob Agents 15:185–191

    CAS  PubMed  Google Scholar 

  139. Yan L, Hsu K, Beckman RA (2008) Antibody-based therapy for solid tumors. Cancer J 14:178–183

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Gurney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gao, B., Klumpen, HJ., Gurney, H. (2014). Defining the Starting Dose: Should It Be mg/kg, mg/m2, or Fixed?. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics