Skip to main content

Clinical Pharmacology in Pediatrics

  • Chapter
  • First Online:
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Pediatric cancer patients differ from adults both in the spectra of their malignancies and in their response to drugs. Our knowledge of the developmental pharmacology of anticancer drugs has increased, and yet we often do not have sufficient understanding to optimally treat pediatric cancer patients, particularly infants and young children. Well-designed clinical pharmacology studies in this group of patients are necessary for the development of novel dosing strategies tailored to children of different ages. The first section of this chapter reviews the basic principles of drug absorption, distribution, metabolism, and elimination in infants, children, and adolescents. Subsequent sections address the appropriate methods to select drug dosages in children, practical issues associated with clinical pharmacokinetic studies in children with cancer, and the pharmacokinetics of specific anticancer drugs in children. We then review the pharmacokinetics of selected anticancer drugs used in children with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson GD, Lynn AM (2009) Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy 29:680–690

    CAS  PubMed  Google Scholar 

  2. Manolis E, Pons G (2009) Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br J Clin Pharmacol 68:493–501

    PubMed  Google Scholar 

  3. Bourgeois FT, Mandl KD, Valim C, Shannon MW (2009) Pediatric adverse drug events in the outpatient setting: an 11-year national analysis. Pediatrics 124:e744–e750

    PubMed Central  PubMed  Google Scholar 

  4. Hempel G, Relling MV, de Rossi G, Stary J, De Lorenzo P, Valsecchi MG, Barisone E, Boos J, Pieters R (2010) Pharmacokinetics of daunorubicin and daunorubicinol in infants with leukemia treated in the interfant 99 protocol. Pediatr Blood Cancer 54(3):355–360

    PubMed  Google Scholar 

  5. Mason W, Grovas A, Halpern S, Dunkel I, Garvin J, Heller G, Rosenblum M, Gardner S, Lyden D, Sands S, Puccetti D, Lindsley K, Merchant T, O’Malley B, Bayer L, Petriccione M, Allen J, Finlay J (1998) Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J Clin Oncol 16:210–221

    CAS  PubMed  Google Scholar 

  6. Prucker C, Attarbaschi A, Peters C, Dworzak MN, Potschger U, Urban C, Fink FM, Meister B, Schmitt K, Haas OA, Gadner H, Mann G (2009) Induction death and treatment-related mortality in first remission of children with acute lymphoblastic leukemia: a population-based analysis of the Austrian Berlin-Frankfurt-Munster study group. Leukemia 23:1264–1269

    CAS  PubMed  Google Scholar 

  7. de Wildt SN, Knibbe CA (2009) Knowledge of developmental pharmacology and modeling approaches should be used to avoid useless trials in children. Eur J Clin Pharmacol 65:849–850, author reply 851–852

    PubMed Central  PubMed  Google Scholar 

  8. Adamson PC (2010) It’s not easy being small. Pediatr Blood Cancer 54:341–343

    PubMed  Google Scholar 

  9. Evans WE, Pratt CB, Taylor RH, Barker LF, Crom WR (1979) Pharmacokinetic monitoring of high-dose methotrexate. Early recognition of high-risk patients. Cancer Chemother Pharmacol 3:161–166

    CAS  PubMed  Google Scholar 

  10. Kapur G, Mattoo T, Aranda JV (2004) Pharmacogenomics and renal drug disposition in the newborn. Semin Perinatol 28:132–140

    PubMed  Google Scholar 

  11. Leeder JS (2009) Developmental pharmacogenetics: a general paradigm for application to neonatal pharmacology and toxicology. Clin Pharmacol Ther 86:678–682

    CAS  PubMed  Google Scholar 

  12. Bowers DC, Aquino VM, Leavey PJ, Bash RO, Journeycake JM, Tomlinson G, Mulne AF, Haynes HJ, Winick NJ (2004) Phase I study of oral cyclophosphamide and oral topotecan for children with recurrent or refractory solid tumors. Pediatr Blood Cancer 42:93–98

    PubMed  Google Scholar 

  13. Daw NC, Santana VM, Iacono LC, Furman WL, Hawkins DR, Houghton PJ, Panetta JC, Gajjar AJ, Stewart CF (2004) Phase I and pharmacokinetic study of topotecan administered orally once daily for 5 days for 2 consecutive weeks to pediatric patients with refractory solid tumors. J Clin Oncol 22:829–837

    CAS  PubMed  Google Scholar 

  14. Kieran MW, Turner CD, Rubin JB, Chi SN, Zimmerman MA, Chordas C, Klement G, Laforme A, Gordon A, Thomas A, Neuberg D, Browder T, Folkman J (2005) A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 27:573–581

    PubMed  Google Scholar 

  15. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    CAS  PubMed  Google Scholar 

  16. Cavell B (1979) Gastric emptying in preterm infants. Acta Paediatr Scand 68:725–730

    CAS  PubMed  Google Scholar 

  17. Grand RJ, Watkins JB, Torti FM (1976) Development of the human gastrointestinal tract. A review. Gastroenterology 70:790–810

    CAS  PubMed  Google Scholar 

  18. Gupta M, Brans YW (1978) Gastric retention in neonates. Pediatrics 62:26–29

    CAS  PubMed  Google Scholar 

  19. Siegel M, Lebenthal E, Krantz B (1984) Effect of caloric density on gastric emptying in premature infants. J Pediatr 104:118–122

    CAS  PubMed  Google Scholar 

  20. Fomon SJ (1974) Nutritional requirements in relation to growth. Monatsschr Kinderheilkd 122(5 Suppl):Suppl:236–239

    Google Scholar 

  21. Rubaltelli FF, Largajolli G (1973) Effect of light exposure on gut transit time in jaundiced newborns. Acta Paediatr Scand 62:146–148

    CAS  PubMed  Google Scholar 

  22. Lebenthal E, Lee PC, Heitlinger LA (1983) Impact of development of the gastrointestinal tract on infant feeding. J Pediatr 102:1–9

    CAS  PubMed  Google Scholar 

  23. Di Lorenzo C, Flores AF, Hyman PE (1995) Age-related changes in colon motility. J Pediatr 127:593–596

    PubMed  Google Scholar 

  24. Ulshen M, Nelson WE, Behrman RE, Kliegman RM, Jenson HB (2000) Stomach and intestines: normal development, structure, and function. In: Behrman RE, Kliegman RM, Jenson HB (eds) Nelson textbook of pediatrics, 16th edn. WB Saunders, Philadelphia, PA, pp 1128–1129

    Google Scholar 

  25. Pinkerton CR, Welshman SG, Glasgow JF, Bridges JM (1980) Can food influence the absorption of methotrexate in children with acute lymphoblastic leukaemia? Lancet 2:944–946

    CAS  PubMed  Google Scholar 

  26. Heubi JE, Balistreri WF, Suchy FJ (1982) Bile salt metabolism in the first year of life. J Lab Clin Med 100:127–136

    CAS  PubMed  Google Scholar 

  27. Watkins JB (1975) Mechanisms of fat absorption and the development of gastrointestinal function. Pediatr Clin North Am 22:721–730

    CAS  PubMed  Google Scholar 

  28. Hamosh M (1987) Lipid metabolism in premature infants. Biol Neonate 52(Suppl 1):50–64

    CAS  PubMed  Google Scholar 

  29. Besunder JB, Reed MD, Blumer JL (1988) Principles of drug biodisposition in the neonate. A critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part II). Clin Pharmacokinet 14:261–286

    CAS  PubMed  Google Scholar 

  30. Hadorn B, Zoppi G, Shmerling DH, Prader A, McIntyre I, Anderson CM (1968) Quantitative assessment of exocrine pancreatic function in infants and children. J Pediatr 73:39–50

    CAS  PubMed  Google Scholar 

  31. Zoppi G, Andreotti G, Pajno-Ferrara F, Njai DM, Gaburro D (1972) Exocrine pancreas function in premature and full term neonates. Pediatr Res 6:880–886

    CAS  PubMed  Google Scholar 

  32. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    CAS  PubMed  Google Scholar 

  33. Oostendorp RL, Beijnen JH, Schellens JH (2009) The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 35:137–147

    CAS  PubMed  Google Scholar 

  34. Krishna R, Krishnaswami S, Kittner B, Sankoh AJ, Jensen BK (2004) The utility of mixed-effects covariate analysis in rapid selection of doses in pediatric subjects: a case study with fexofenadine hydrochloride. Biopharm Drug Dispos 25:373–387

    CAS  PubMed  Google Scholar 

  35. Fanta S, Niemi M, Jonsson S, Karlsson MO, Holmberg C, Neuvonen PJ, Hoppu K, Backman JT (2008) Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics 18:77–90

    CAS  PubMed  Google Scholar 

  36. Fakhoury M, Litalien C, Medard Y, Cave H, Ezzahir N, Peuchmaur M, Jacqz-Aigrain E (2005) Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab Dispos 33:1603–1607

    CAS  PubMed  Google Scholar 

  37. Giraud C, Decleves X, Perrot JY, Manceau S, Pannier E, Firtion G, Morini JP, Chappuy H, Batteux F, Chouzenoux S, Scherrmann JM, Blanche S, Treluyer JM (2009) High levels of P-glycoprotein activity in human lymphocytes in the first 6 months of life. Clin Pharmacol Ther 85:289–295

    CAS  PubMed  Google Scholar 

  38. Dey S (2006) Single nucleotide polymorphisms in human P-glycoprotein: its impact on drug delivery and disposition. Expert Opin Drug Deliv 3:23–35

    CAS  PubMed  Google Scholar 

  39. Bouzom F, Walther B (2008) Pharmacokinetic predictions in children by using the physiologically based pharmacokinetic modelling. Fundam Clin Pharmacol 22:579–587

    CAS  PubMed  Google Scholar 

  40. Friis-Hansen B (1971) Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 47(1):Suppl 2:264

    CAS  PubMed  Google Scholar 

  41. Finkelstein JW (1994) The effect of developmental changes in adolescence on drug disposition. J Adolesc Health 15:612–618

    CAS  PubMed  Google Scholar 

  42. Milsap RL, Jusko WJ (1994) Pharmacokinetics in the infant. Environ Health Perspect 102(Suppl 11):107–110

    PubMed Central  PubMed  Google Scholar 

  43. Engelhardt B (2003) Development of the blood-brain barrier. Cell Tissue Res 314:119–129

    CAS  PubMed  Google Scholar 

  44. Anstrom JA, Thore CR, Moody DM, Brown WR (2007) Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex. Histochem Cell Biol 127:205–213

    CAS  PubMed  Google Scholar 

  45. Ningaraj NS (2006) Drug delivery to brain tumours: challenges and progress. Expert Opin Drug Deliv 3:499–509

    CAS  PubMed  Google Scholar 

  46. Schumacher U, Mollgard K (1997) The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol 108:179–182

    CAS  PubMed  Google Scholar 

  47. Daood M, Tsai C, Ahdab-Barmada M, Watchko JF (2008) ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 39:211–218

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Murry DJ, Crom WR, Reddick WE, Bhargava R, Evans WE (1995) Liver volume as a determinant of drug clearance in children and adolescents. Drug Metab Dispos 23:1110–1116

    CAS  PubMed  Google Scholar 

  49. Noda T, Todani T, Watanabe Y, Yamamoto S (1997) Liver volume in children measured by computed tomography. Pediatr Radiol 27:250–252

    CAS  PubMed  Google Scholar 

  50. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8:33–45

    CAS  PubMed  Google Scholar 

  51. Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118:250–267

    CAS  PubMed  Google Scholar 

  52. Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet 41:959–998

    CAS  PubMed  Google Scholar 

  53. Treluyer JM, Cheron G, Sonnier M, Cresteil T (1996) Cytochrome P-450 expression in sudden infant death syndrome. Biochem Pharmacol 52:497–504

    CAS  PubMed  Google Scholar 

  54. Sesardic D, Pasanen M, Pelkonen O, Boobis AR (1990) Differential expression and regulation of members of the cytochrome P450IA gene subfamily in human tissues. Carcinogenesis 11:1183–1188

    CAS  PubMed  Google Scholar 

  55. Sonnier M, Cresteil T (1998) Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 251:893–898

    CAS  PubMed  Google Scholar 

  56. Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, Takashima S, Imaoka S, Funae Y, Yabusaki Y, Kamataki T, Kobayashi S (1997) A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 61:2567–2574

    CAS  PubMed  Google Scholar 

  57. Croom EL, Stevens JC, Hines RN, Wallace AD, Hodgson E (2009) Human hepatic CYP2B6 developmental expression: the impact of age and genotype. Biochem Pharmacol 78:184–190

    CAS  PubMed  Google Scholar 

  58. Aleksa K, Matsell D, Krausz K, Gelboin H, Ito S, Koren G (2005) Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol 20:872–885

    PubMed  Google Scholar 

  59. Cresteil T, Beaune P, Kremers P, Celier C, Guengerich FP, Leroux JP (1985) Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. Eur J Biochem 151:345–350

    CAS  PubMed  Google Scholar 

  60. Pasanen M, Pelkonen O, Kauppila A, Park SS, Friedman FK, Gelboin HV (1987) Characterization of human fetal hepatic cytochrome P-450-associated 7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase activities by monoclonal antibodies. Dev Pharmacol Ther 10:125–132

    CAS  PubMed  Google Scholar 

  61. Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T (1997) Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 7:441–452

    CAS  PubMed  Google Scholar 

  62. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, Hines RN (2004) Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 308:965–974

    CAS  PubMed  Google Scholar 

  63. Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, Hines RN (2008) Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos 36:1587–1593

    CAS  PubMed  Google Scholar 

  64. Treluyer JM, Jacqz-Aigrain E, Alvarez F, Cresteil T (1991) Expression of CYP2D6 in developing human liver. Eur J Biochem 202:583–588

    CAS  PubMed  Google Scholar 

  65. Blake MJ, Gaedigk A, Pearce RE, Bomgaars LR, Christensen ML, Stowe C, James LP, Wilson JT, Kearns GL, Leeder JS (2007) Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 81:510–516

    CAS  PubMed  Google Scholar 

  66. Jacqz-Aigrain E, Cresteil T (1992) Cytochrome P450-dependent metabolism of dextromethorphan: fetal and adult studies. Dev Pharmacol Ther 18:161–168

    CAS  PubMed  Google Scholar 

  67. Hashimoto H, Toide K, Kitamura R, Fujita M, Tagawa S, Itoh S, Kamataki T (1993) Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur J Biochem 218:585–595

    CAS  PubMed  Google Scholar 

  68. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T (1997) Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247:625–634

    CAS  PubMed  Google Scholar 

  69. Ohmori S, Fujiki N, Nakasa H, Nakamura H, Ishii I, Itahashi K, Kitada M (1998) Steroid hydroxylation by human fetal CYP3A7 and human NADPH-cytochrome P450 reductase coexpressed in insect cells using baculovirus. Res Commun Mol Pathol Pharmacol 100:15–28

    CAS  PubMed  Google Scholar 

  70. Shimada T, Yamazaki H, Mimura M, Wakamiya N, Ueng YF, Guengerich FP, Inui Y (1996) Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 24:515–522

    CAS  PubMed  Google Scholar 

  71. Burtin P, Jacqz-Aigrain E, Girard P, Lenclen R, Magny JF, Betremieux P, Tehiry C, Desplanques L, Mussat P (1994) Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther 56:615–625

    CAS  PubMed  Google Scholar 

  72. Payne K, Mattheyse FJ, Liebenberg D, Dawes T (1989) The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol 37:267–272

    CAS  PubMed  Google Scholar 

  73. Ciotti M, Basu N, Brangi M, Owens IS (1999) Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem Biophys Res Commun 260:199–202

    CAS  PubMed  Google Scholar 

  74. Hanioka N, Ozawa S, Jinno H, Ando M, Saito Y, Sawada J (2001) Human liver UDP-glucuronosyltransferase isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica 31:687–699

    CAS  PubMed  Google Scholar 

  75. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854

    CAS  PubMed Central  PubMed  Google Scholar 

  76. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36:439–452

    PubMed  Google Scholar 

  77. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    CAS  PubMed  Google Scholar 

  78. Strange RC, Howie AF, Hume R, Matharoo B, Bell J, Hiley C, Jones P, Beckett GJ (1989) The development expression of alpha-, mu- and pi-class glutathione S-transferases in human liver. Biochim Biophys Acta 993:186–190

    CAS  PubMed  Google Scholar 

  79. Beckett GJ, Howie AF, Hume R, Matharoo B, Hiley C, Jones P, Strange RC (1990) Human glutathione S-transferases: radioimmunoassay studies on the expression of alpha-, mu- and pi-class isoenzymes in developing lung and kidney. Biochim Biophys Acta 1036:176–182

    CAS  PubMed  Google Scholar 

  80. Grochow LB, Baker SD (1998) The relationship of age to the disposition and effects of anticancer drugs. In: Grochow LB, Ames MM (eds) A clinician’s guide to chemotherapy pharmacokinetics and pharmacokinetics. Williams & Wilkins, Baltimore, MD, pp 35–53

    Google Scholar 

  81. Milsap RL, Hill MR, Szefler SJ (1992) Special pharmacokinetic considerations in children. In: Evans WE, Schentag JJ, Jusko WJ (eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, vol 3. Applied Therapeutics, Vancouver, WA, p 10-1

    Google Scholar 

  82. Haycock GB (1998) Development of glomerular filtration and tubular sodium reabsorption in the human fetus and newborn. Br J Urol 81(Suppl 2):33–38

    PubMed  Google Scholar 

  83. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NH (2009) Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24:67–76

    PubMed  Google Scholar 

  84. Arant BS Jr (1987) Postnatal development of renal function during the first year of life. Pediatr Nephrol 1:308–313

    PubMed  Google Scholar 

  85. Wilkins BH (1992) Renal function in sick very low birthweight infants: 1. Glomerular filtration rate. Arch Dis Child 67:1140–1145

    CAS  PubMed  Google Scholar 

  86. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104:849–854

    CAS  PubMed  Google Scholar 

  87. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    CAS  PubMed  Google Scholar 

  88. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    CAS  PubMed  Google Scholar 

  89. Rodman JH, Maneval DC, Magill HL, Sunderland M (1993) Measurement of Tc-99m DTPA serum clearance for estimating glomerular filtration rate in children with cancer. Pharmacotherapy 13:10–16

    CAS  PubMed  Google Scholar 

  90. Figg WD, McLeod HL (2004) Handbook of anticancer pharmacokinetics and pharmacodynamics, 1st edn. Humana, Totowa, NJ

    Google Scholar 

  91. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    PubMed  Google Scholar 

  92. Lankisch P, Wessalowski R, Maisonneuve P, Haghgu M, Hermsen D, Kramm CM (2006) Serum cystatin C is a suitable marker for routine monitoring of renal function in pediatric cancer patients, especially of very young age. Pediatr Blood Cancer 46:767–772

    CAS  PubMed  Google Scholar 

  93. West JR, Smith HW, Chasis H (1948) Glomerular filtration rate, effective renal blood flow, and maximal tubular excretory capacity in infancy. J Pediatr 32:10–18

    CAS  PubMed  Google Scholar 

  94. Gao B, Klumpen HJ, Gurney H (2008) Dose calculation of anticancer drugs. Expert Opin Drug Metab Toxicol 4:1307–1319

    CAS  PubMed  Google Scholar 

  95. Gurney H (2002) How to calculate the dose of chemotherapy. Br J Cancer 86:1297–1302

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Miller AA (2002) Body surface area in dosing anticancer agents: scratch the surface! J Natl Cancer Inst 94:1822–1823

    CAS  PubMed  Google Scholar 

  97. Sawyer M, Ratain MJ (2001) Body surface area as a determinant of pharmacokinetics and drug dosing. Invest New Drugs 19:171–177

    CAS  PubMed  Google Scholar 

  98. DuBois D, DuBois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    CAS  Google Scholar 

  99. Grochow LB, Baraldi C, Noe D (1990) Is dose normalization to weight or body surface area useful in adults? J Natl Cancer Inst 82:323–325

    CAS  PubMed  Google Scholar 

  100. Gurney H (1996) Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol 14:2590–2611

    CAS  PubMed  Google Scholar 

  101. Baker SD, Verweij J, Rowinsky EK, Donehower RC, Schellens JH, Grochow LB, Sparreboom A (2002) Role of body surface area in dosing of investigational anticancer agents in adults, 1991-2001. J Natl Cancer Inst 94:1883–1888

    CAS  PubMed  Google Scholar 

  102. Gurney HP, Ackland S, Gebski V, Farrell G (1998) Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body-surface area for dose calculation. J Clin Oncol 16:2299–2304

    CAS  PubMed  Google Scholar 

  103. McLeod HL, Relling MV, Crom WR, Silverstein K, Groom S, Rodman JH, Rivera GK, Crist WM, Evans WE (1992) Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl 18:S23–S29

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Stewart CF, Panetta JC, O’Shaughnessy MA, Throm SL, Fraga CH, Owens T, Liu T, Billups C, Rodriguez-Galindo C, Gajjar A, Furman WL, McGregor LM (2007) UGT1A1 promoter genotype correlates with SN-38 pharmacokinetics, but not severe toxicity in patients receiving low-dose irinotecan. J Clin Oncol 25:2594–2600

    CAS  PubMed  Google Scholar 

  105. Anderson BJ, Allegaert K, Holford NH (2006) Population clinical pharmacology of children: general principles. Eur J Pediatr 165:741–746

    PubMed  Google Scholar 

  106. Johnson TN (2005) Modelling approaches to dose estimation in children. Br J Clin Pharmacol 59:663–669

    CAS  PubMed  Google Scholar 

  107. Tod M, Jullien V, Pons G (2008) Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet 47:231–243

    CAS  PubMed  Google Scholar 

  108. Meibohm B, Laer S, Panetta JC, Barrett JS (2005) Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 7:E475–E487

    PubMed  Google Scholar 

  109. Stewart CF, Iacono LC, Chintagumpala M, Kellie SJ, Ashley D, Zamboni WC, Kirstein MN, Fouladi M, Seele LG, Wallace D, Houghton PJ, Gajjar A (2004) Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor. J Clin Oncol 22:3357–3365

    CAS  PubMed  Google Scholar 

  110. Turner PK, Iacono LC, Panetta JC, Santana VM, Daw NC, Gajjar A, Stewart CF (2006) Development and validation of limited sampling models for topotecan lactone pharmacokinetic studies in children. Cancer Chemother Pharmacol 57:475–482

    CAS  PubMed  Google Scholar 

  111. Galpin AJ, Evans WE (1993) Therapeutic drug monitoring in cancer management. Clin Chem 39:2419–2430

    CAS  PubMed  Google Scholar 

  112. Leme PR, Creaven PJ, Allen LM, Berman M (1975) Kinetic model for the disposition and metabolism of moderate and high-dose methotrexate (NSC-740) in man. Cancer Chemother Rep 1(59):811–817

    Google Scholar 

  113. Evans WE, Stewart CF, Hutson PR, Cairnes DA, Bowman WP, Yee GC, Crom WR (1982) Disposition of intermediate-dose methotrexate in children with acute lymphocytic leukemia. Drug Intell Clin Pharm 16:839–842

    CAS  PubMed  Google Scholar 

  114. Henderson ES, Adamson RH, Oliverio VT (1965) The metabolic fate of tritiated methotrexate. II. Absorption and excretion in man. Cancer Res 25:1018–1024

    CAS  PubMed  Google Scholar 

  115. Huffman DH, Wan SH, Azarnoff DL, Hogstraten B (1973) Pharmacokinetics of methotrexate. Clin Pharmacol Ther 14:572–579

    CAS  PubMed  Google Scholar 

  116. Pratt CB, Howarth C, Ransom JL, Bowles D, Green AA, Kumar AP, Rivera G, Evans WE (1980) High-dose methotrexate used alone and in combination for measurable primary or metastatic osteosarcoma. Cancer Treat Rep 64:11–20

    CAS  PubMed  Google Scholar 

  117. Raude E, Oellerich M, Weinel P, Freund M, Schrappe M, Riehm H, Poliwoda H (1988) High-dose methotrexate: pharmacokinetics in children and young adults. Int J Clin Pharmacol Ther Toxicol 26:364–370

    CAS  PubMed  Google Scholar 

  118. Taylor JR, Halprin KM (1977) Effect of sodium salicylate and indomethacin on methotrexate-serum albumin binding. Arch Dermatol 113:588–591

    CAS  PubMed  Google Scholar 

  119. Evans WE, Pratt CB (1978) Effect of pleural effusion on high-dose methotrexate kinetics. Clin Pharmacol Ther 23:68–72

    CAS  PubMed  Google Scholar 

  120. Pauley JL, Panetta JC, Schmidt J, Kornegay N, Relling MV, Pui CH (2004) Late-onset delayed excretion of methotrexate. Cancer Chemother Pharmacol 54:146–152

    CAS  PubMed  Google Scholar 

  121. Wan SH, Huffman DH, Azarnoff DL, Stephens R, Hoogstraten B (1974) Effect of route of administration and effusions on methotrexate pharmacokinetics. Cancer Res 34:3487–3491

    CAS  PubMed  Google Scholar 

  122. Li J, Gwilt P (2002) The effect of malignant effusions on methotrexate disposition. Cancer Chemother Pharmacol 50:373–382

    CAS  PubMed  Google Scholar 

  123. Evans WE, Hutson PR, Stewart CF, Cairnes DA, Bowman WP, Rivera G, Crom WR (1983) Methotrexate cerebrospinal fluid and serum concentrations after intermediate-dose methotrexate infusion. Clin Pharmacol Ther 33:301–307

    CAS  PubMed  Google Scholar 

  124. Millot F, Rubie H, Mazingue F, Mechinaud F, Thyss A (1994) Cerebrospinal fluid drug levels of leukemic children receiving intravenous 5 g/m2 methotrexate. Leuk Lymphoma 14:141–144

    CAS  PubMed  Google Scholar 

  125. Seidel H, Andersen A, Kvaloy JT, Nygaard R, Moe PJ, Jacobsen G, Lindqvist B, Slordal L (2000) Variability in methotrexate serum and cerebrospinal fluid pharmacokinetics in children with acute lymphocytic leukemia: relation to assay methodology and physiological variables. Leuk Res 24:193–199

    CAS  PubMed  Google Scholar 

  126. Bleyer AW (1977) Clinical pharmacology of intrathecal methotrexate. II. An improved dosage regimen derived from age-related pharmacokinetics. Cancer Treat Rep 61:1419–1425

    CAS  PubMed  Google Scholar 

  127. Ruggiero A, Conter V, Milani M, Biagi E, Lazzareschi I, Sparano P, Riccardi R (2001) Intrathecal chemotherapy with antineoplastic agents in children. Paediatr Drugs 3:237–246

    CAS  PubMed  Google Scholar 

  128. Balis FM, Savitch JL, Bleyer WA (1983) Pharmacokinetics of oral methotrexate in children. Cancer Res 43:2342–2345

    CAS  PubMed  Google Scholar 

  129. Smeland E, Bremnes RM, Andersen A, Jaeger R, Eide TJ, Huseby NE, Aarbakke J (1994) Renal and hepatic toxicity after high-dose 7-hydroxymethotrexate in the rat. Cancer Chemother Pharmacol 34:119–124

    CAS  PubMed  Google Scholar 

  130. Jordan CG, Rashidi MR, Laljee H, Clarke SE, Brown JE, Beedham C (1999) Aldehyde oxidase-catalysed oxidation of methotrexate in the liver of guinea-pig, rabbit and man. J Pharm Pharmacol 51:411–418

    CAS  PubMed  Google Scholar 

  131. McGuire JJ, Bertino JR (1981) Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem 38 Spec No (Pt 1):19–48

    Google Scholar 

  132. Galivan J (1980) Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol Pharmacol 17:105–110

    CAS  PubMed  Google Scholar 

  133. Breithaupt H, Kuenzlen E (1982) Pharmacokinetics of methotrexate and 7-hydroxymethotrexate following infusions of high-dose methotrexate. Cancer Treat Rep 66:1733–1741

    CAS  PubMed  Google Scholar 

  134. Shen DD, Azarnoff DL (1978) Clinical pharmacokinetics of methotrexate. Clin Pharmacokinet 3:1–13

    CAS  PubMed  Google Scholar 

  135. Evans WE, Tsiatis A, Crom WR, Brodeur GM, Coburn TC, Pratt CB (1981) Pharmacokinetics of sustained serum methotrexate concentrations secondary to gastrointestinal obstruction. J Pharm Sci 70:1194–1198

    CAS  PubMed  Google Scholar 

  136. Vlaming ML, Pala Z, van Esch A, Wagenaar E, de Waart DR, van de Wetering K, van der Kruijssen CM, Oude Elferink RP, van Tellingen O, Schinkel AH (2009) Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin Cancer Res 15:3084–3093

    CAS  PubMed  Google Scholar 

  137. Vlaming ML, Pala Z, van Esch A, Wagenaar E, van Tellingen O, de Waart DR, Oude Elferink RP, van de Wetering K, Schinkel AH (2008) Impact of Abcc2 (Mrp2) and Abcc3 (Mrp3) on the in vivo elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate. Clin Cancer Res 14:8152–8160

    CAS  PubMed  Google Scholar 

  138. Vlaming ML, van Esch A, Pala Z, Wagenaar E, van de Wetering K, van Tellingen O, Schinkel AH (2009) Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol Cancer Ther 8(12):3350–3359

    CAS  PubMed  Google Scholar 

  139. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, Chan D, Sparreboom A, Giacomini KM, Pui CH, Evans WE, Relling MV (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27:5972–5978

    CAS  PubMed  Google Scholar 

  140. Lonnerholm G, Valsecchi MG, De Lorenzo P, Schrappe M, Hovi L, Campbell M, Mann G, Janka-Schaub G, Li CK, Stary J, Hann I, Pieters R (2009) Pharmacokinetics of high-dose methotrexate in infants treated for acute lymphoblastic leukemia. Pediatr Blood Cancer 52:596–601

    PubMed  Google Scholar 

  141. Thompson PA, Murry DJ, Rosner GL, Lunagomez S, Blaney SM, Berg SL, Camitta BM, Dreyer ZE, Bomgaars LR (2007) Methotrexate pharmacokinetics in infants with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 59:847–853

    CAS  PubMed  Google Scholar 

  142. Aumente D, Buelga DS, Lukas JC, Gomez P, Torres A, Garcia MJ (2006) Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet 45:1227–1238

    CAS  PubMed  Google Scholar 

  143. Donelli MG, Zucchetti M, Robatto A, Perlangeli V, D’Incalci M, Masera G, Rossi MR (1995) Pharmacokinetics of HD-MTX in infants, children, and adolescents with non-B acute lymphoblastic leukemia. Med Pediatr Oncol 24:154–159

    CAS  PubMed  Google Scholar 

  144. Plard C, Bressolle F, Fakhoury M, Zhang D, Yacouben K, Rieutord A, Jacqz-Aigrain E (2007) A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 60:609–620

    PubMed  Google Scholar 

  145. Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12:1667–1672

    CAS  PubMed  Google Scholar 

  146. Relling MV, McLeod HL, Bowman LC, Santana VM (1994) Etoposide pharmacokinetics and pharmacodynamics after acute and chronic exposure to cisplatin. Clin Pharmacol Ther 56:503–511

    CAS  PubMed  Google Scholar 

  147. Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR (1994) O-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 45:352–358

    CAS  PubMed  Google Scholar 

  148. Wang YM, Sutow WW, Romsdahl MM, Perez C (1979) Age-related pharmacokinetics of high-dose methotrexate in patients with osteosarcoma. Cancer Treat Rep 63:405–410

    CAS  PubMed  Google Scholar 

  149. Bressolle F, Bologna C, Kinowski JM, Arcos B, Sany J, Combe B (1997) Total and free methotrexate pharmacokinetics in elderly patients with rheumatoid arthritis. A comparison with young patients. J Rheumatol 24:1903–1909

    CAS  PubMed  Google Scholar 

  150. Kerr IG, Jolivet J, Collins JM, Drake JC, Chabner BA (1983) Test dose for predicting high-dose methotrexate infusions. Clin Pharmacol Ther 33:44–51

    CAS  PubMed  Google Scholar 

  151. Sand TE, Jacobsen S (1981) Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol 19:453–456

    CAS  PubMed  Google Scholar 

  152. Gheuens E, Slee PH, de Bruijn EA (1990) Bioavailability of cyclophosphamide in the CMF regimen. Onkologie 13:203–206

    CAS  PubMed  Google Scholar 

  153. Kaijser GP, De Kraker J, Bult A, Underberg WJ, Beijnen JH (1998) Pharmacokinetics of ifosfamide and some metabolites in children. Anticancer Res 18:1941–1949

    CAS  PubMed  Google Scholar 

  154. Yule SM, Price L, Pearson ADJ, Boddy AV (1997) Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res 3:1985–1992

    CAS  PubMed  Google Scholar 

  155. Cerny T, Kupfer A (1992) The enigma of ifosfamide encephalopathy. Ann Oncol 3:679–681

    CAS  PubMed  Google Scholar 

  156. Kerbusch T, Jansen RL, Mathot RA, Huitema AD, Jansen M, van Rijswijk RE, Beijnen JH (2001) Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin. Clin Pharmacol Ther 70:132–141

    CAS  PubMed  Google Scholar 

  157. Yule SM, Boddy AV, Cole M, Price L, Wyllie R, Tasso MJ, Pearson AD, Idle JR (1996) Cyclophosphamide pharmacokinetics in children. Br J Clin Pharmacol 41:13–19

    CAS  PubMed  Google Scholar 

  158. Yule SM, Walker D, Cole M, McSorley L, Cholerton S, Daly AK, Pearson AD, Boddy AV (1999) The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Dispos 27:417–421

    CAS  PubMed  Google Scholar 

  159. Tasso MJ, Boddy AV, Price L, Wyllie RA, Pearson AD, Idle JR (1992) Pharmacokinetics and metabolism of cyclophosphamide in paediatric patients. Cancer Chemother Pharmacol 30:207–211

    CAS  PubMed  Google Scholar 

  160. Yule SM, Boddy AV, Cole M, Price L, Wyllie R, Tasso MJ, Pearson AD, Idle JR (1995) Cyclophosphamide metabolism in children. Cancer Res 55:803–809

    CAS  PubMed  Google Scholar 

  161. Moreb JS, Mohuczy D, Ostmark B, Zucali JR (2007) RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother Pharmacol 59:127–136

    CAS  PubMed  Google Scholar 

  162. Dirven HA, van Ommen B, van Bladeren PJ (1994) Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 54:6215–6220

    CAS  PubMed  Google Scholar 

  163. Pinto N, Ludeman SM, Dolan ME (2009) Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 10:1897–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Gidding CE, Meeuwsen-de Boer GJ, Koopmans P, Uges DR, Kamps WA, de Graaf SS (1999) Vincristine pharmacokinetics after repetitive dosing in children. Cancer Chemother Pharmacol 44:203–209

    CAS  PubMed  Google Scholar 

  165. Groninger E, Meeuwsen-De Boar T, Koopmans P, Uges D, Sluiter W, Veerman A, Kamps W, De Graaf S (2002) Pharmacokinetics of vincristine monotherapy in childhood acute lymphoblastic leukemia. Pediatr Res 52:113–118

    CAS  PubMed  Google Scholar 

  166. Lonnerholm G, Frost BM, Abrahamsson J, Behrendtz M, Castor A, Forestier E, Heyman M, Uges DR, de Graaf SS (2008) Vincristine pharmacokinetics is related to clinical outcome in children with standard risk acute lymphoblastic leukemia. Br J Haematol 142(4):616–621

    PubMed  Google Scholar 

  167. Crom WR, de Graaf SSN, Synold T, Uges DR, Bloemhof H, Rivera G, Christensen ML, Mahmoud H, Evans WE (1994) Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J Pediatrics 125:642–649

    CAS  Google Scholar 

  168. Jackson DV Jr, Sethi VS, Spurr CL, McWhorter JM (1981) Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res 41:1466–1468

    PubMed  Google Scholar 

  169. Dennison JB, Kulanthaivel P, Barbuch RJ, Renbarger JL, Ehlhardt WJ, Hall SD (2006) Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos 34:1317–1327

    CAS  PubMed  Google Scholar 

  170. Dennison JB, Jones DR, Renbarger JL, Hall SD (2007) Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther 321:553–563

    CAS  PubMed  Google Scholar 

  171. Dennison JB, Mohutsky MA, Barbuch RJ, Wrighton SA, Hall SD (2008) Apparent high CYP3A5 expression is required for significant metabolism of vincristine by human cryopreserved hepatocytes. J Pharmacol Exp Ther 327:248–257

    CAS  PubMed  Google Scholar 

  172. Yao D, Ding S, Burchell B, Wolf CR, Friedberg T (2000) Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance. J Pharmacol Exp Ther 294:387–395

    CAS  PubMed  Google Scholar 

  173. Renbarger JL, McCammack KC, Rouse CE, Hall SD (2008) Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer 50:769–771

    PubMed  Google Scholar 

  174. Song S, Suzuki H, Kawai R, Sugiyama Y (1999) Effect of PSC 833, a P-glycoprotein modulator, on the disposition of vincristine and digoxin in rats. Drug Metab Dispos 27:689–694

    CAS  PubMed  Google Scholar 

  175. Watanabe T, Miyauchi S, Sawada Y, Iga T, Hanano M, Inaba M, Sugiyama Y (1992) Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver. Possible roles of P-glycoprotein in biliary excretion of vincristine. J Hepatol 16:77–88

    CAS  PubMed  Google Scholar 

  176. Watanabe T, Suzuki H, Sawada Y, Naito M, Tsuruo T, Inaba M, Hanano M, Sugiyama Y (1995) Induction of hepatic P-glycoprotein enhances biliary excretion of vincristine in rats. J Hepatol 23:440–448

    CAS  PubMed  Google Scholar 

  177. de Lannoy IA, Mandin RS, Silverman M (1994) Renal secretion of vinblastine, vincristine and colchicine in vivo. J Pharmacol Exp Ther 268:388–395

    PubMed  Google Scholar 

  178. van den Berg HW, Desai ZR, Wilson R, Kennedy G, Bridges JM, Shanks RG (1982) The pharmacokinetics of vincristine in man: reduced drug clearance associated with raised serum alkaline phosphatase and dose-limited elimination. Cancer Chemother Pharmacol 8:215–219

    PubMed  Google Scholar 

  179. Woods WG, O’Leary M, Nesbit ME (1981) Life-threatening neuropathy and hepatotoxicity in infants during induction therapy for acute lymphoblastic leukemia. J Pediatr 98:642–645

    CAS  PubMed  Google Scholar 

  180. Frost BM, Lonnerholm G, Koopmans P, Abrahamsson J, Behrendtz M, Castor A, Forestier E, Uges DR, de Graaf SS (2003) Vincristine in childhood leukaemia: no pharmacokinetic rationale for dose reduction in adolescents. Acta Paediatr 92:551–557

    CAS  PubMed  Google Scholar 

  181. de Graaf SSN, Bloemhof H, Vendrig D, Uges DRA (1995) Vincristine disposition in children with acute lymphoblastic leukemia. Med Pediatr Oncol 24:235–240

    PubMed  Google Scholar 

  182. Hartman A, van Schaik RH, van der Heiden IP, Broekhuis MJ, Meier M, den Boer ML, Pieters R (2009) Polymorphisms in genes involved in vincristine pharmacokinetics or pharmacodynamics are not related to impaired motor performance in children with leukemia. Leuk Res 34(2):154–159

    PubMed  Google Scholar 

  183. Salama NN, Yang Z, Bui T, Ho RJ (2006) MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci 95:2293–2308

    CAS  PubMed  Google Scholar 

  184. Plasschaert SL, Groninger E, Boezen M, Kema I, de Vries EG, Uges D, Veerman AJ, Kamps WA, Vellenga E, de Graaf SS, de Bont ES (2004) Influence of functional polymorphisms of the MDR1 gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther 76:220–229

    CAS  PubMed  Google Scholar 

  185. Chan JD (1998) Pharmacokinetic drug interactions of vinca alkaloids: summary of case reports. Pharmacotherapy 18:1304–1307

    CAS  PubMed  Google Scholar 

  186. Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 38:111–180

    CAS  PubMed  Google Scholar 

  187. Moore A, Pinkerton R (2009) Vincristine: can its therapeutic index be enhanced? Pediatr Blood Cancer 53:1180–1187

    PubMed  Google Scholar 

  188. Chen CL, Rawwas J, Sorrell A, Eddy L, Uckun FM (2001) Bioavailability and pharmacokinetic features of etoposide in childhood acute lymphoblastic leukemia patients. Leuk Lymphoma 42:317–327

    CAS  PubMed  Google Scholar 

  189. Wurthwein G, Krumpelmann S, Tillmann B, Real E, Schulze-Westhoff P, Jurgens H, Boos J (1999) Population pharmacokinetic approach to compare oral and i.v. administration of etoposide. Anticancer Drugs 10:807–814

    CAS  PubMed  Google Scholar 

  190. Lagas JS, Fan L, Wagenaar E, Vlaming ML, van Tellingen O, Beijnen JH, Schinkel AH (2010) P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 Determine the Pharmacokinetics of Etoposide. Clin Cancer Res 16(1):130–140

    CAS  PubMed  Google Scholar 

  191. Piao YJ, Li X, Choi JS (2008) Effects of verapamil on etoposide pharmacokinetics after intravenous and oral administration in rats. Eur J Drug Metab Pharmacokinet 33:159–164

    CAS  PubMed  Google Scholar 

  192. Allen LM, Creaven PJ (1975) Comparison of the human pharmacokinetics of VM-26 and VP-16, two antineoplastic epipodophyllotoxin glucopyranoside derivatives. Eur J Cancer 11:697–707

    CAS  PubMed  Google Scholar 

  193. Wurthwein G, Klingebiel T, Krumpelmann S, Metz M, Schwenker K, Kranz K, Lanvers C, Boos J (2002) Population pharmacokinetics of high-dose etoposide in children receiving different conditioning regimens. Anticancer Drugs 13:101–110

    CAS  PubMed  Google Scholar 

  194. Relling MV, Mahmoud H, Pui CH, Sandlund JT, Rivera GK, Ribeiro R, Crist WM, Evans WE (1996) Etoposide achieves potentially cytotoxic concentrations in cerebrospinal fluid of children with acute lymphoblastic leukemia. J Clin Oncol 14:399–404

    CAS  PubMed  Google Scholar 

  195. Kiya K, Uozumi T, Ogasawara H, Sugiyama K, Hotta T, Mikami T, Kurisu K (1992) Penetration of etoposide into human malignant brain tumors after intravenous and oral administration. Cancer Chemother Pharmacol 29:339–342

    CAS  PubMed  Google Scholar 

  196. Yang J, Bogni A, Schuetz EG, Ratain M, Dolan ME, McLeod H, Gong L, Thorn C, Relling MV, Klein TE, Altman RB (2009) Etoposide pathway. Pharmacogenet Genomics 19:552–553

    CAS  PubMed  Google Scholar 

  197. Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, Ishizaki T (1998) A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther 286:1294–1300

    CAS  PubMed  Google Scholar 

  198. Zhuo X, Zheng N, Felix CA, Blair IA (2004) Kinetics and regulation of cytochrome P450-mediated etoposide metabolism. Drug Metab Dispos 32:993–1000

    CAS  PubMed  Google Scholar 

  199. Zheng N, Felix CA, Pang S, Boston R, Moate P, Scavuzzo J, Blair IA (2004) Plasma etoposide catechol increases in pediatric patients undergoing multiple-day chemotherapy with etoposide. Clin Cancer Res 10:2977–2985

    CAS  PubMed  Google Scholar 

  200. Relling MV, Evans R, Dass C, Desiderio DM, Nemec J (1992) Human cytochrome P450 metabolism of teniposide and etoposide. J Pharmacol Exp Ther 261:491–496

    CAS  PubMed  Google Scholar 

  201. Palle J, Britt-Marie F, Goran G, Marit H, Jukka K, Eva L, Kjeld S, Gudmar L (2006) Etoposide pharmacokinetics in children treated for acute myeloid leukemia. Anticancer Drugs 17:1087–1094

    CAS  PubMed  Google Scholar 

  202. Rodman JH, Murry DJ, Madden T, Santana VM (1994) Altered etoposide pharmacokinetics and time to engraftment in pediatric patients undergoing autologous bone marrow transplantation. J Clin Oncol 12:2390–2397

    CAS  PubMed  Google Scholar 

  203. Sinkule JA, Hutson P, Hayes FA, Etcubanas E, Evans WE (1984) Pharmacokinetics of etoposide (VP-16) in children and adolescents with refractory solid tumors. Cancer Res 44:3109–3113

    CAS  PubMed  Google Scholar 

  204. Hijiya N, Panetta JC, Zhou Y, Kyzer EP, Howard SC, Jeha S, Razzouk BI, Ribeiro RC, Rubnitz JE, Hudson MM, Sandlund JT, Pui CH, Relling MV (2006) Body mass index does not influence pharmacokinetics or outcome of treatment in children with acute lymphoblastic leukemia. Blood 108:3997–4002

    CAS  PubMed  Google Scholar 

  205. Ritzmo C, Soderhall S, Karlen J, Nygren H, Eksborg S (2007) Pharmacokinetics of doxorubicin and etoposide in a morbidly obese pediatric patient. Pediatr Hematol Oncol 24:437–445

    CAS  PubMed  Google Scholar 

  206. Eksborg S, Soderhall S, Frostvik-Stolt M, Lindberg A, Liliemark E (2000) Plasma pharmacokinetics of etoposide (VP-16) after i.v. administration to children. Anticancer Drugs 11:237–241

    CAS  PubMed  Google Scholar 

  207. Clark PI, Slevin ML (1987) The clinical pharmacology of etoposide and teniposide. Clin Pharmacokinet 12:223–252

    CAS  PubMed  Google Scholar 

  208. Lowis SP, Pearson ADJ, Newell DR, Cole M (1993) Etoposide pharmacokinetics in children: the development and prospective validation of a dosing equation. Cancer Res 53:4881–4889

    CAS  PubMed  Google Scholar 

  209. Veal GJ, Errington J, Thomas HD, Boddy AV, Lowis S (2006) Biliary excretion of etoposide in children with cancer. Cancer Chemother Pharmacol 58:415–417

    PubMed  Google Scholar 

  210. Kishi S, Yang W, Boureau B, Morand S, Das S, Chen P, Cook EH, Rosner GL, Schuetz EG, Pui CH, Relling MV (2004) Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 103(1):67–72

    CAS  PubMed  Google Scholar 

  211. Sonnichsen DS, Ribeiro RC, Luo X, Mathew P, Relling MV (1995) Pharmacokinetics and pharmacodynamics of 21-day continuous oral etoposide in pediatric patients with solid tumors. Clin Pharmacol Ther 58:99–107

    CAS  PubMed  Google Scholar 

  212. Boos J, Krumpelmann S, Schulze-Westhoff P, Euting T, Berthold F, Jurgens H (1995) Steady-state levels and bone marrow toxicity of etoposide in children and infants: does etoposide require age-dependent dose calculation? J Clin Oncol 13:2954–2960

    CAS  PubMed  Google Scholar 

  213. Veal GJ, Cole M, Errington J, Pearson AD, Gerrard M, Whyman G, Ellershaw C, Boddy AV (2010) Pharmacokinetics of carboplatin and etoposide in infant neuroblastoma patients. Cancer Chemother Pharmacol 65(6):1057–1066

    CAS  PubMed  Google Scholar 

  214. Bisogno G, Cowie F, Boddy A, Thomas HD, Dick G, Pinkerton CR (1998) High-dose cyclosporin with etoposide – toxicity and pharmacokinetic interaction in children with solid tumours. Br J Cancer 77:2304–2309

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Lacayo NJ, Lum BL, Becton DL, Weinstein H, Ravindranath Y, Chang MN, Bomgaars L, Lauer SJ, Sikic BI, Dahl GV (2002) Pharmacokinetic interactions of cyclosporine with etoposide and mitoxantrone in children with acute myeloid leukemia. Leukemia 16:920–927

    CAS  PubMed  Google Scholar 

  216. Hertzberg RP, Caranfa MJ, Holden KG, Jakas DR, Gallagher G, Mattern MR, Mong SM, Bartus JO, Johnson RK, Kingsbury WD (1989) Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J Med Chem 32:715–720

    CAS  PubMed  Google Scholar 

  217. Pommier Y, Leteurtre F, Fesen MR, Fujimori A, Bertrand R, Solary E, Kohlhagen G, Kohn KW (1994) Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Invest 12:530–542

    CAS  PubMed  Google Scholar 

  218. Tanizawa A, Fujimori A, Fujimori Y, Pommier Y (1994) Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst 86:836–842

    CAS  PubMed  Google Scholar 

  219. Simon T, Langler A, Harnischmacher U, Fruhwald MC, Jorch N, Claviez A, Berthold F, Hero B (2007) Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. J Cancer Res Clin Oncol 133:653–661

    CAS  PubMed  Google Scholar 

  220. Lesimple T, Riffaud L, Frappaz D, Ben Hassel M, Gedouin D, Bay JO, Linassier C, Hamlat A, Piot G, Fabbro M, Saikali S, Carsin B, Guegan Y (2009) Topotecan in combination with radiotherapy in unresectable glioblastoma: a phase 2 study. J Neurooncol 93:253–260

    CAS  PubMed  Google Scholar 

  221. Hijiya N, Stewart CF, Zhou Y, Campana D, Coustan-Smith E, Rivera GK, Relling MV, Pui CH, Gajjar A (2008) Phase II study of topotecan in combination with dexamethasone, asparaginase, and vincristine in pediatric patients with acute lymphoblastic leukemia in first relapse. Cancer 112:1983–1991

    CAS  PubMed  Google Scholar 

  222. Walterhouse DO, Lyden ER, Breitfeld PP, Qualman SJ, Wharam MD, Meyer WH (2004) Efficacy of topotecan and cyclophosphamide given in a phase II window trial in children with newly diagnosed metastatic rhabdomyosarcoma: a Children’s Oncology Group study. J Clin Oncol 22:1398–1403

    CAS  PubMed  Google Scholar 

  223. Metzger ML, Stewart CF, Freeman BB III, Billups CA, Hoffer FA, Wu J, Coppes MJ, Grant R, Chintagumpala M, Mullen EA, Alvarado C, Daw NC, Dome JS (2007) Topotecan is active against Wilms’ tumor: results of a multi-institutional phase II study. J Clin Oncol 25:3130–3136

    CAS  PubMed  Google Scholar 

  224. Chantada GL, Fandino AC, Carcaboso AM, Lagomarsino E, de Davila MT, Guitter MR, Rose A, Manzitti J, Bramuglia G, Abramson DH (2009) A phase I study of periocular topotecan in children with intraocular retinoblastoma. Invest Ophthalmol Vis Sci 50(4):1492–1496

    PubMed  Google Scholar 

  225. Zamboni WC, Bowman LC, Tan M, Santana VM, Houghton PJ, Meyer WH, Pratt CB, Heideman RL, Gajjar AJ, Pappo AS, Stewart CF (1999) Interpatient variability in bioavailability of the intravenous formulation of topotecan given orally to children with recurrent solid tumors. Cancer Chemother Pharmacol 43:454–460

    CAS  PubMed  Google Scholar 

  226. Schellens JHM, Creemers GJ, Beijnen JH, Rosing H, de Boer-Dennert M, McDonald M, Davies BE, Verweij J (1996) Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 73:1268–1271

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    CAS  PubMed  Google Scholar 

  228. Sparreboom A, Loos WJ, Burger H, Sissung TM, Verweij J, Figg WD, Nooter K, Gelderblom H (2005) Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther 4:650–658

    CAS  PubMed  Google Scholar 

  229. Kruijtzer CM, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM, Schellens JH (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950

    CAS  PubMed  Google Scholar 

  230. Verweij J, Lund B, Beijnen J, Planting A, de Boer-Dennert M, Koier I, Rosing H, Hansen H (1993) Phase I and pharmacokinetics study of topotecan, a new topoisomerase I inhibitor. Ann Oncol 4:673–678

    CAS  PubMed  Google Scholar 

  231. Athale UH, Stewart C, Kuttesch JF, Moghrabi A, Meyer W, Pratt C, Gajjar A, Heideman RL (2002) Phase I study of combination topotecan and carboplatin in pediatric solid tumors. J Clin Oncol 20:88–95

    CAS  PubMed  Google Scholar 

  232. Dennis MJ, Beijnen JH, Grochow LB, van Warmerdam LJ (1997) An overview of the clinical pharmacology of topotecan. Semin Oncol 24:S5-12–S5-18

    Google Scholar 

  233. Gelderblom H, Loos WJ, Verweij J, de Jonge MJ, Sparreboom A (2000) Topotecan lacks third space sequestration. Clin Cancer Res 6:1288–1292

    CAS  PubMed  Google Scholar 

  234. Baker SD, Heideman RL, Crom WR, Kuttesch JF, Gajjar A, Stewart CF (1996) Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother Pharmacol 37:195–202

    CAS  PubMed  Google Scholar 

  235. Zamboni WC, Luftner DI, Egorin MJ, Schweigert M, Sezer O, Richter T, Natale JJ, Possinger K (2001) The effect of increasing topotecan infusion from 30 minutes to 4 hours on the duration of exposure in cerebrospinal fluid. Ann Oncol 12:119–122

    CAS  PubMed  Google Scholar 

  236. Freeman BB 3rd, Iacono LC, Panetta JC, Gajjar A, Stewart CF (2006) Using plasma topotecan pharmacokinetics to estimate topotecan exposure in cerebrospinal fluid of children with medulloblastoma. Neuro Oncol 8:89–95

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Freeman BB III, Daw NC, Geyer JR, Furman WL, Stewart CF (2006) Evaluation of gefitinib for treatment of refractory solid tumors and central nervous system malignancies in pediatric patients. Cancer Invest 24:310–317

    CAS  PubMed  Google Scholar 

  238. de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449

    PubMed  Google Scholar 

  239. Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, Mercer KE, Zhuang Y, Panetta JC, Johnston B, Scheper RJ, Stewart CF, Schuetz JD (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24:7612–7621

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Shen J, Carcaboso AM, Hubbard KE, Tagen M, Wynn HG, Panetta JC, Waters CM, Elmeliegy MA, Stewart CF (2009) Compartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res 69:5885–5892

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Zhuang Y, Fraga CH, Hubbard KE, Hagedorn N, Panetta JC, Waters CM, Stewart CF (2006) Topotecan central nervous system penetration is altered by a tyrosine kinase inhibitor. Cancer Res 66:11305–11313

    CAS  PubMed  Google Scholar 

  242. Groves MD, Glantz MJ, Chamberlain MC, Baumgartner KE, Conrad CA, Hsu S, Wefel JS, Gilbert MR, Ictech S, Hunter KU, Forman AD, Puduvalli VK, Colman H, Hess KR, Yung WK (2008) A multicenter phase II trial of intrathecal topotecan in patients with meningeal malignancies. Neuro Oncol 10:208–215

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Stapleton S, Blaney S (2006) New agents for intrathecal administration. Cancer Invest 24:528–534

    CAS  PubMed  Google Scholar 

  244. Rosing H, Herben VMM, van Gortel-van Zomeren DM, Hop E, Kettenes-van den Bosch J, ten Bokkel Huinink WW, Beijnen JH (1997) Isolation and structural confirmation of N-desmethyl topotecan, a metabolite of topotecan. Cancer Chemother Pharmacol 39:498–504

    CAS  PubMed  Google Scholar 

  245. Rosing H, van Zomeren DM, Doyle E, Bult A, Beijnen JH (1998) O-glucuronidation, a newly identified metabolic pathway for topotecan and N-desmethyl topotecan. Anticancer Drugs 9:587–592

    CAS  PubMed  Google Scholar 

  246. Rosing H, van Zomeren DM, Doyle E, ten Bokkel WW, Schellens JH, Bult A, Beijnen JH (1999) Quantification of topotecan and its metabolite N-desmethyltopotecan in human plasma, urine and faeces by high-performance liquid chromatographic methods. J Chromatogr B Biomed Sci Appl 727:191–203

    PubMed  Google Scholar 

  247. Herben VMM, Schoemaker NE, Rosing H, Zomeren DM, ten Bokkel Huinink WW, Dubbelman R, Hearn S, Schellens JHM, Beijnen JH (2002) Urinary and fecal excretion of topotecan in patients with malignant solid tumors. Cancer Chemother Pharmacol 50:59–64

    CAS  PubMed  Google Scholar 

  248. Zamboni WC, Houghton PJ, Johnson RK, Hulstein JL, Crom WR, Cheshire PJ, Hanna SK, Richmond LB, Luo X, Stewart CF (1998) Probenecid alters topotecan systemic and renal disposition by inhibiting renal tubular secretion. J Pharmacol Exp Ther 284:89–94

    CAS  PubMed  Google Scholar 

  249. Herrington JD, Figueroa JA, Kirstein MN, Zamboni WC, Stewart CF (2001) Effect of hemodialysis on topotecan disposition in a patient with severe renal dysfunction. Cancer Chemother Pharmacol 47:89–93

    CAS  PubMed  Google Scholar 

  250. Iacono LC, Adams D, Homans AC, Guillot A, McCune JS, Stewart CF (2004) Topotecan disposition in an anephric child. J Pediatr Hematol Oncol 26:596–600

    PubMed  Google Scholar 

  251. Santana VM, Zamboni WC, Kirstein MN, Tan M, Liu T, Gajjar A, Houghton PJ, Stewart CF (2003) A pilot study of protracted topotecan dosing using a pharmacokinetically guided dosing approach in children with solid tumors. Clin Cancer Res 9:633–640

    CAS  PubMed  Google Scholar 

  252. Schaiquevich P, Panetta JC, Iacono LC, Freeman BB III, Santana VM, Gajjar A, Stewart CF (2007) Population pharmacokinetic analysis of topotecan in pediatric cancer patients. Clin Cancer Res 13:6703–6711

    CAS  PubMed  Google Scholar 

  253. Hoppe A, Seronie-Vivien S, Thomas F, Delord JP, Malard L, Canal P, Chatelut E (2005) Serum cystatin C is a better marker of topotecan clearance than serum creatinine. Clin Cancer Res 11:3038–3044

    CAS  PubMed  Google Scholar 

  254. Blaney S, Berg SL, Pratt C, Weitman S, Sullivan J, Luchtman-Jones L, Bernstein M (2001) A phase I study of irinotecan in pediatric patients: a pediatric oncology group study. Clin Cancer Res 7:32–37

    CAS  PubMed  Google Scholar 

  255. Furman WL, Stewart CF, Poquette CA, Pratt CB, Santana VM, Zamboni WC, Bowman LC, Ma MK, Hoffer FA, Meyer WH, Pappo AS, Walter AW, Houghton PJ (1999) Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 17:1815–1824

    CAS  PubMed  Google Scholar 

  256. Furman WL, Crews KR, Billups C, Wu J, Gajjar AJ, Daw NC, Patrick CC, Rodriguez-Galindo C, Stewart CF, Dome JS, Panetta JC, Houghton PJ, Santana VM (2006) Cefixime allows greater dose escalation of oral irinotecan: a phase I study in pediatric patients with refractory solid tumors. J Clin Oncol 24:563–570

    CAS  PubMed  Google Scholar 

  257. Furman WL, Navid F, Daw NC, McCarville MB, McGregor LM, Spunt SL, Rodriguez-Galindo C, Panetta JC, Crews KR, Wu J, Gajjar AJ, Houghton PJ, Santana VM, Stewart CF (2009) Tyrosine kinase inhibitor enhances the bioavailability of oral irinotecan in pediatric patients with refractory solid tumors. J Clin Oncol 27:4599–4604

    CAS  PubMed  Google Scholar 

  258. Haaz MC, Riche C, Rivory LP, Robert J (1998) Biosynthesis of an aminopiperidino metabolite of irinotecan [7-ethyl- 10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecine] by human hepatic microsomes. Drug Metab Dispos 26:769–774

    CAS  PubMed  Google Scholar 

  259. Haaz MC, Rivory LP, Riche C, Vernillet L, Robert J (1998) Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 58:468–472

    CAS  PubMed  Google Scholar 

  260. Dodds HM, Haaz MC, Riou JF, Robert J, Rivory LP (1998) Identification of a new metabolite of CPT-11 (irinotecan): pharmacological properties and activation to SN-38. J Pharmacol Exp Ther 286:578–583

    CAS  PubMed  Google Scholar 

  261. Haaz MC, Rivory L, Jantet S, Ratanasavanh D, Robert J (1997) Glucuronidation of SN-38, the active metabolite of irinotecan, by human hepatic microsomes. Pharmacol Toxicol 80:91–96

    CAS  PubMed  Google Scholar 

  262. van der Bol JM, Mathijssen RH, Creemers GJ, Planting AS, Loos WJ, Wiemer EA, Friberg LE, Verweij J, Sparreboom A, de Jong FAA (2010) CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan. Clin Cancer Res 16:736–742

    PubMed  Google Scholar 

  263. Wagner LM, Crews KR, Stewart CF, Rodriguez-Galindo C, McNall-Knapp RY, Albritton K, Pappo AS, Furman WL (2008) Reducing irinotecan-associated diarrhea in children. Pediatr Blood Cancer 50:201–207

    PubMed  Google Scholar 

  264. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramirez J, Relling M, Chen P, Das S, Rosner GL, Ratain MJ (2009) Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27:2604–2614

    CAS  PubMed  Google Scholar 

  265. Crews KR, Stewart CF, Jones-Wallace D, Thompson SJ, Houghton PJ, Heideman RL, Fouladi M, Bowers DC, Chintagumpala MM, Gajjar A (2002) Altered irinotecan pharmacokinetics in pediatric high-grade glioma patients receiving enzyme-inducing anticonvulsant therapy. Clin Cancer Res 8:2202–2209

    CAS  PubMed  Google Scholar 

  266. Rowinsky EK, Grochow LB, Ettinger DS, Sartorius SE, Lubejko BG, Chen T (1994) Phase I and pharmacological study of the novel topoisomerase I inhibitor 7-ethyl-10-[4-1-(1-piperidino)-1-piperdino]carbonyloxycamptothecin (CPT-11) administered as a ninety-minute infusion every 3 weeks. Cancer Res 54:427–436

    CAS  PubMed  Google Scholar 

  267. Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol 20:3293–3301

    CAS  PubMed  Google Scholar 

  268. Thompson PA, Gupta M, Rosner GL, Yu A, Barrett J, Bomgaars L, Bernstein ML, Blaney SM, Mondick J (2008) Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children’s oncology group. Cancer Chemother Pharmacol 62:1027–1037

    CAS  PubMed  Google Scholar 

  269. Gajjar A, Chintagumpala MM, Bowers DC, Jones-Wallace D, Stewart CF, Crews KR (2003) Effect of intrapatient dosage escalation of irinotecan on its pharmacokinetics in pediatric patients who have high-grade gliomas and receive enzyme-inducing anticonvulsant therapy. Cancer 97:2374–2380

    CAS  PubMed  Google Scholar 

  270. Crews KR, Stewart CF, Liu T, Rodriguez-Galindo C, Santana VM, Daw NC (2004) Effect of fractionated ifosfamide on the pharmacokinetics of irinotecan in pediatric patients with osteosarcoma. J Pediatr Hematol Oncol 26:764–767

    PubMed  Google Scholar 

  271. Wagner LM, Villablanca JG, Stewart CF, Crews KR, Groshen S, Reynolds CP, Park JR, Maris JM, Hawkins RA, Daldrup-Link HE, Jackson HA, Matthay KK (2009) Phase I trial of oral irinotecan and temozolomide for children with relapsed high-risk neuroblastoma: a new approach to neuroblastoma therapy consortium study. J Clin Oncol 27:1290–1296

    CAS  PubMed  Google Scholar 

  272. Jakacki RI, Hamilton M, Gilbertson RJ, Blaney SM, Tersak J, Krailo MD, Ingle AM, Voss SD, Dancey JE, Adamson PC (2008) Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: a Children’s Oncology Group Phase I Consortium Study. J Clin Oncol 26:4921–4927

    CAS  PubMed  Google Scholar 

  273. Jakacki RI, Yates A, Blaney SM, Zhou T, Timmerman R, Ingle AM, Flom L, Prados MD, Adamson PC, Pollack IF (2008) A phase I trial of temozolomide and lomustine in newly diagnosed high-grade gliomas of childhood. Neuro Oncol 10:569–576

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Casey DA, Wexler LH, Merchant MS, Chou AJ, Merola PR, Price AP, Meyers PA (2009) Irinotecan and temozolomide for Ewing sarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer 53:1029–1034

    PubMed  Google Scholar 

  275. Newlands ES, Blackledge GRP, Slack JA, Rustin GJS, Smith DB, Stuart NSA, Quarterman CP, Hofman R, Stevens MFG, Brampton MH, Gibson AC (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65:287–291

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Reid JM, Stevens DC, Rubin J, Ames MM (1997) Pharmacokinetics of 3-methyl-(triazen-1-yl)imidazole-4-carboximide following the administration of temozolomide to patients with advanced cancer. Clin Cancer Res 3:2393–2398

    CAS  PubMed  Google Scholar 

  277. Estlin EJ, Lashford L, Ablett S, Price L, Gowing R, Gholkar A, Kohler J, Lewis IJ, Morland B, Pinkerton CR, Stevens MC, Mott M, Stevens R, Newell DR, Walker D, Dicks-Mireaux C, McDowell H, Reidenberg P, Statkevich P, Marco A, Batra V, Dugan M, Pearson AD (1998) Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children’s Cancer Study Group. Br J Cancer 78:652–661

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6:2585–2597

    CAS  PubMed  Google Scholar 

  279. Beale P, Judson I, Moore S, Statkevich P, Marco A, Cutler DL, Reidenberg P, Brada M (1999) Effect of gastric pH on the relative oral bioavailability and pharmacokinetics of temozolomide. Cancer Chemother Pharmacol 44:389–394

    CAS  PubMed  Google Scholar 

  280. Panetta JC, Kirstein MN, Gajjar A, Nair G, Fouladi M, Heideman RL, Wilkinson M, Stewart CF (2003) Population pharmacokinetics of temozolomide and metabolites in infants and children with primary central nervous system tumors. Cancer Chemother Pharmacol 52:435–441

    CAS  PubMed  Google Scholar 

  281. Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA, Stupp R (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10:3728–3736

    CAS  PubMed  Google Scholar 

  282. Rosso L, Brock CS, Gallo JM, Saleem A, Price PM, Turkheimer FE, Aboagye EO (2009) A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res 69:120–127

    CAS  PubMed  Google Scholar 

  283. Zhou Q, Gallo JM (2009) Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. Neuro Oncol 11:301–310

    PubMed Central  PubMed  Google Scholar 

  284. Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, Kramer M, Dill C, Ehninger G, Schackert G, Krex D (2009) A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 20(1):175–181

    CAS  PubMed  Google Scholar 

  285. Tsang LL, Farmer PB, Gescher A, Slack JA (1990) Characterisation of urinary metabolites of temozolomide in humans and mice and evaluation of their cytotoxicity. Cancer Chemother Pharmacol 26:429–436

    CAS  PubMed  Google Scholar 

  286. Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, Dugan M, Cutler D, Batra V, Grochow LB, Donehower RC, Rowinsky EK (1999) Absorption, metabolism, and excretion of 14 C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 5:309–317

    CAS  PubMed  Google Scholar 

  287. Baruchel S, Diezi M, Hargrave D, Stempak D, Gammon J, Moghrabi A, Coppes MJ, Fernandez CV, Bouffet E (2006) Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur J Cancer 42:2335–2342

    CAS  PubMed  Google Scholar 

  288. Broniscer A, Chintagumpala M, Fouladi M, Krasin MJ, Kocak M, Bowers DC, Iacono LC, Merchant TE, Stewart CF, Houghton PJ, Kun LE, Ledet D, Gajjar A (2006) Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J Neurooncol 76:313–319

    PubMed  Google Scholar 

  289. Broniscer A, Gururangan S, MacDonald TJ, Goldman S, Packer RJ, Stewart CF, Wallace D, Danks MK, Friedman HS, Poussaint TY, Kun LE, Boyett JM, Gajjar A (2007) Phase I trial of single-dose temozolomide and continuous administration of o6-benzylguanine in children with brain tumors: a pediatric brain tumor consortium report. Clin Cancer Res 13:6712–6718

    CAS  PubMed  Google Scholar 

  290. Broniscer A, Iacono L, Chintagumpala M, Fouladi M, Wallace D, Bowers DC, Stewart C, Krasin MJ, Gajjar A (2005) Role of temozolomide after radiotherapy for newly diagnosed diffuse brainstem glioma in children: results of a multiinstitutional study (SJHG-98). Cancer 103:133–139

    CAS  PubMed  Google Scholar 

  291. Horton TM, Thompson PA, Berg SL, Adamson PC, Ingle AM, Dolan ME, Delaney SM, Hedge M, Weiss HL, Wu MF, Blaney SM (2007) Phase I pharmacokinetic and pharmacodynamic study of temozolomide in pediatric patients with refractory or recurrent leukemia: a Children’s Oncology Group Study. J Clin Oncol 25:4922–4928

    CAS  PubMed  Google Scholar 

  292. Meany HJ, Warren KE, Fox E, Cole DE, Aikin AA, Balis FM (2009) Pharmacokinetics of temozolomide administered in combination with O6-benzylguanine in children and adolescents with refractory solid tumors. Cancer Chemother Pharmacol 65:137–142

    CAS  PubMed  Google Scholar 

  293. Riccardi A, Mazzarella G, Cefalo G, Garre ML, Massimino M, Barone C, Sandri A, Ridola V, Ruggiero A, Mastrangelo S, Lazzareschi I, Caldarelli M, Maira G, Madon E, Riccardi R (2003) Pharmacokinetics of temozolomide given three times a day in pediatric and adult patients. Cancer Chemother Pharmacol 52:459–464

    CAS  PubMed  Google Scholar 

  294. Loghin ME, Prados MD, Wen P, Junck L, Lieberman F, Fine H, Fink KL, Metha M, Kuhn J, Lamborn K, Chang SM, Cloughesy T, DeAngelis LM, Robins IH, Aldape KD, Yung WK (2007) Phase I study of temozolomide and irinotecan for recurrent malignant gliomas in patients receiving enzyme-inducing antiepileptic drugs: a north american brain tumor consortium study. Clin Cancer Res 13:7133–7138

    CAS  PubMed  Google Scholar 

  295. Geoerger B, Morland B, Ndiaye A, Doz F, Kalifa G, Geoffray A, Pichon F, Frappaz D, Chatelut E, Opolon P, Hain S, Boderet F, Bosq J, Emile JF, Le Deley MC, Capdeville R, Vassal G (2009) Target-driven exploratory study of imatinib mesylate in children with solid malignancies by the Innovative Therapies for Children with Cancer (ITCC) European Consortium. Eur J Cancer 45:2342–2351

    CAS  PubMed  Google Scholar 

  296. Baruchel S, Sharp JR, Bartels U, Hukin J, Odame I, Portwine C, Strother D, Fryer C, Halton J, Egorin MJ, Reis RM, Martinho O, Stempak D, Hawkins C, Gammon J, Bouffet E (2009) A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur J Cancer 45:2352–2359

    CAS  PubMed  Google Scholar 

  297. Cassier PA, Dufresne A, Arifi S, El Sayadi H, Labidi I, Ray-Coquard I, Tabone S, Meeus P, Ranchere D, Sunyach MP, Decouvelaere AV, Alberti L, Blay JY (2008) Imatinib mesilate for the treatment of gastrointestinal stromal tumour. Expert Opin Pharmacother 9:1211–1222

    CAS  PubMed  Google Scholar 

  298. Hamada A, Miyano H, Watanabe H, Saito H (2003) Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 307:824–828

    CAS  PubMed  Google Scholar 

  299. Champagne MA, Capdeville R, Krailo M, Qu W, Peng B, Rosamilia M, Therrien M, Zoellner U, Blaney SM, Bernstein M (2004) Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood 104:2655–2660

    CAS  PubMed  Google Scholar 

  300. Nikolova Z, Peng B, Hubert M, Sieberling M, Keller U, Ho YY, Schran H, Capdeville R (2004) Bioequivalence, safety, and tolerability of imatinib tablets compared with capsules. Cancer Chemother Pharmacol 53:433–438

    CAS  PubMed  Google Scholar 

  301. Egorin MJ, Shah DD, Christner SM, Yerk MA, Komazec KA, Appleman LR, Redner RL, Miller BM, Beumer JH (2009) Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. Br J Clin Pharmacol 68:370–374

    CAS  PubMed  Google Scholar 

  302. Sparano BA, Egorin MJ, Parise RA, Walters J, Komazec KA, Redner RL, Beumer JH (2009) Effect of antacid on imatinib absorption. Cancer Chemother Pharmacol 63:525–528

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Kretz O, Weiss HM, Schumacher MM, Gross G (2004) In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia. Br J Clin Pharmacol 58:212–216

    CAS  PubMed  Google Scholar 

  304. Leis JF, Stepan DE, Curtin PT, Ford JM, Peng B, Schubach S, Druker BJ, Maziarz RT (2004) Central nervous system failure in patients with chronic myelogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571). Leuk Lymphoma 45:695–698

    CAS  PubMed  Google Scholar 

  305. Takayama N, Sato N, O’Brien SG, Ikeda Y, Okamoto S (2002) Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol 119:106–108

    PubMed  Google Scholar 

  306. Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B (2009) The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 37:946–955

    CAS  PubMed  Google Scholar 

  307. Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894

    CAS  PubMed  Google Scholar 

  308. van Erp NP, Gelderblom H, Karlsson MO, Li J, Zhao M, Ouwerkerk J, Nortier JW, Guchelaar HJ, Baker SD, Sparreboom A (2007) Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res 13:7394–7400

    PubMed  Google Scholar 

  309. Gurney H, Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM, Wilcken N, Clarke CL, Mann GJ, Collins M, Delforce SE, Lynch K, Schran H (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82:33–40

    CAS  PubMed  Google Scholar 

  310. Wang Y, Zhou L, Dutreix C, Leroy E, Yin Q, Sethuraman V, Riviere GJ, Yin OQ, Schran H, Shen ZX (2008) Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia. Br J Clin Pharmacol 65:885–892

    CAS  PubMed  Google Scholar 

  311. Dutreix C, Peng B, Mehring G, Hayes M, Capdeville R, Pokorny R, Seiberling M (2004) Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol 54:290–294

    CAS  PubMed  Google Scholar 

  312. Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907

    CAS  PubMed  Google Scholar 

  313. Pursche S, Schleyer E, von Bonin M, Ehninger G, Said SM, Prondzinsky R, Illmer T, Wang Y, Hosius C, Nikolova Z, Bornhauser M, Dresemann G (2008) Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients. Curr Clin Pharmacol 3:198–203

    CAS  PubMed Central  PubMed  Google Scholar 

  314. Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, Kun LE, Friedman H, Packer R, Banerjee A, Geyer JR, Goldman S, Poussaint TY, Krasin MJ, Wang Y, Hayes M, Murgo A, Weiner S, Boyett JM (2007) Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol 9:145–160

    CAS  PubMed Central  PubMed  Google Scholar 

  315. O’Brien SG, Meinhardt P, Bond E, Beck J, Peng B, Dutreix C, Mehring G, Milosavljev S, Huber C, Capdeville R, Fischer T (2003) Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89:1855–1859

    PubMed Central  PubMed  Google Scholar 

  316. Ramalingam S, Lagattuta TF, Egorin MJ, Hayes MJ, Ramanathan RK (2004) Biliary excretion of imatinib mesylate and its metabolite CGP 74588 in humans. Pharmacotherapy 24:1232–1235

    PubMed  Google Scholar 

  317. Ramanathan RK, Egorin MJ, Takimoto CH, Remick SC, Doroshow JH, LoRusso PA, Mulkerin DL, Grem JL, Hamilton A, Murgo AJ, Potter DM, Belani CP, Hayes MJ, Peng B, Ivy SP (2008) Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of liver dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 26:563–569

    CAS  PubMed  Google Scholar 

  318. Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, Messner HA, Lipton JH (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15:4750–4758

    CAS  PubMed  Google Scholar 

  319. Gardner ER, Burger H, van Schaik RH, van Oosterom AT, de Bruijn EA, Guetens G, Prenen H, de Jong FA, Baker SD, Bates SE, Figg WD, Verweij J, Sparreboom A, Nooter K (2006) Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 80:192–201

    CAS  PubMed  Google Scholar 

  320. Menon-Andersen D, Mondick JT, Jayaraman B, Thompson PA, Blaney SM, Bernstein M, Bond M, Champagne M, Fossler MJ, Barrett JS (2009) Population pharmacokinetics of imatinib mesylate and its metabolite in children and young adults. Cancer Chemother Pharmacol 63:229–238

    CAS  PubMed  Google Scholar 

  321. Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, Geoerger B, Barrois M, Seronie-Vivien S, LeCesne A, Vassal G (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14:7102–7109

    CAS  PubMed  Google Scholar 

  322. Broniscer A, Baker SJ, Stewart CF, Merchant TE, Laningham FH, Schaiquevich P, Kocak M, Morris EB, Endersby R, Ellison DW, Gajjar A (2009) Phase I and pharmacokinetic studies of erlotinib administered concurrently with radiotherapy for children, adolescents, and young adults with high-grade glioma. Clin Cancer Res 15:701–707

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Daw NC, Furman WL, Stewart CF, Iacono LC, Krailo M, Bernstein ML, Dancey JE, Speights RA, Blaney SM, Croop JM, Reaman GH, Adamson PC (2005) Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol 23:6172–6180

    CAS  PubMed  Google Scholar 

  324. Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, Duvauchelle T (2005) Single-dose clinical pharmacokinetic studies of gefitinib. Clin Pharmacokinet 44:1165–1177

    CAS  PubMed  Google Scholar 

  325. Frohna P, Lu J, Eppler S, Hamilton M, Wolf J, Rakhit A, Ling J, Kenkare-Mitra SR, Lum BL (2006) Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects. J Clin Pharmacol 46:282–290

    CAS  PubMed  Google Scholar 

  326. Ranson M, Shaw H, Wolf J, Hamilton M, McCarthy S, Dean E, Reid A, Judson I (2010) A phase I dose-escalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva((R)), OSI-774) in patients with advanced solid tumors of epithelial origin. Cancer Chemother Pharmacol. 66(1):53–58

    Google Scholar 

  327. Rukazenkov Y, Speake G, Marshall G, Anderton J, Davies BR, Wilkinson RW, Mark Hickinson D, Swaisland A (2009) Epidermal growth factor receptor tyrosine kinase inhibitors: similar but different? Anticancer Drugs 20:856–866

    CAS  PubMed  Google Scholar 

  328. McKillop D, Hutchison M, Partridge EA, Bushby N, Cooper CM, Clarkson-Jones JA, Herron W, Swaisland HC (2004) Metabolic disposition of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat, dog and man. Xenobiotica 34:917–934

    CAS  PubMed  Google Scholar 

  329. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706

    PubMed  Google Scholar 

  330. Li J, Zhao M, He P, Hidalgo M, Baker SD (2007) Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 13:3731–3737

    CAS  PubMed  Google Scholar 

  331. McKillop D, McCormick AD, Millar A, Miles GS, Phillips PJ, Hutchison M (2005) Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 35:39–50

    CAS  PubMed  Google Scholar 

  332. Swaisland HC, Cantarini MV, Fuhr R, Holt A (2006) Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet 45:633–644

    CAS  PubMed  Google Scholar 

  333. Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M, Takemura M, Yabuuchi H, Soda H, Kohno S (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49:337–343

    PubMed  Google Scholar 

  334. Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH (2008) Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 7:2280–2287

    CAS  PubMed  Google Scholar 

  335. Nakamura Y, Oka M, Soda H, Shiozawa K, Yoshikawa M, Itoh A, Ikegami Y, Tsurutani J, Nakatomi K, Kitazaki T, Doi S, Yoshida H, Kohno S (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546

    CAS  PubMed  Google Scholar 

  336. Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, Ambudkar SV, Chen ZS (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67:11012–11020

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton F. Stewart Pharm.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tagen, M., Stewart, C.F. (2014). Clinical Pharmacology in Pediatrics. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_31

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics