Skip to main content

Preclinical Screening for New Anticancer Agents

  • Chapter
  • First Online:
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Preclinical screening procedures for anticancer agents have evolved from empirical to target-oriented screens and have contributed to the approval of a number of molecularly targeted drugs over the past decade. This chapter reviews historical in vitro and in vivo screens, the currently used cell-based as well as cell-free high-throughput screens. Tailored, secondary predictive screening procedures employing primary patient tumors and clonogenic or nude mouse xenograft assays are also described. Examples of approved drugs that have been developed based on a particular screening approach and future perspectives for finding novel and more potent drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger AM (2007) Highlights in experimental therapeutics. Cancer Lett 245:11–21

    Article  CAS  PubMed  Google Scholar 

  2. Beckwith MC, Tyler LS (eds) (2001) Cancer chemotherapy manual. Wolters Kluwer, St Louis

    Google Scholar 

  3. Goldin A, Woolley PV, Tew KD et al (1983) Sources of agents and their selection for antitumor activity screening. In: Hilgard P, Hellman K (eds) Anticancer drug development. Barcelona, Prous, pp 9–45

    Google Scholar 

  4. Simpson BT, Marsh MC (1926) Chemotherapeutic experiments with coaltar dyes on spontaneous mouse tumors. J Cancer Res 10:50–60

    CAS  Google Scholar 

  5. Mendel B (1937) Action of ferricyanide on tumor cells. Am J Cancer 30:549–552

    Article  CAS  Google Scholar 

  6. Boyland E (1938) Experiments on the chemotherapy of cancer. I. The effects of certain antibacterial substances and related compounds. Biochem J 32:1207–1213

    CAS  PubMed  Google Scholar 

  7. Shear MJ, Hartwell JL, Peters VB et al (1947) Some aspects of a joint institutional research program on chemotherapy of cancer: current laboratory and clinical experiments with bacterial polysaccharide and with synthetic organic compounds. In: Moulton FR (ed) Approaches to tumor chemotherapy. American Association for the Advancement Science, Washington DC, pp 236–284

    Google Scholar 

  8. Gilman A, Philips FS (1946) The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science 103:409–415

    Article  CAS  Google Scholar 

  9. Faber S, Diamond LK, Mercer RD et al (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonists, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238:787–793

    Article  Google Scholar 

  10. Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in the NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zubrod CG, Schepartz S, Leiter J et al (1966) The chemotherapy program of the National Cancer Institute: history, analysis and plans. Cancer Chemother Rep 50:349–540

    Google Scholar 

  12. Venditti JM (1981) Preclinical drug development: rationale and methods. Semin Oncol 8:349–361

    CAS  PubMed  Google Scholar 

  13. Monks A, Scudiero D, Shoemaker R et al (1991) (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

    Article  CAS  PubMed  Google Scholar 

  14. Paull KD, Shoemaker RH, Hodes L et al (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 81:1088–1092

    Article  CAS  PubMed  Google Scholar 

  15. Dykes DJ, Abbott BJ, Mayo JG et al (1992) Development of human tumor xenograft models for in vivo evaluation of new antitumor drugs. In: Fiebig HH, Berger DP (eds) Contributions to oncology, vol 42, Immunedeficient mice in oncology. Karger, Basel, pp 1–22

    Google Scholar 

  16. Hollingshead M, Plowman J, Alley MC et al (1999) The hollow fibre assay. In: Fiebig HH, Burger AM (eds) Relevance of tumor models for anticancer drug development, vol 54, Contributions to oncology. Karger, Basel, pp 109–120

    Google Scholar 

  17. Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7(1):9–16

    Article  CAS  PubMed  Google Scholar 

  18. Plowman J, Camalier R, Alley M et al (1999) US-NCI testing procedures. In: Fiebig HH, Burger AM (eds) Contributions to oncology, vol 54, Relevance of tumor models for anticancer drug development. Karger, Basel, pp 121–135

    Google Scholar 

  19. Smith V, Sausville EA, Camalier RF et al (2005) Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol 56(2):126–37

    Article  CAS  PubMed  Google Scholar 

  20. Beveridge M, Park YW, Hermes J et al (2000) Detection of p56ick kinase activity using scintillation proximity assay in 384-well format and imaging proximity assay in 384- and 1536-well format. J Biomol Screen 5:205–211

    Article  CAS  PubMed  Google Scholar 

  21. Alley MC, Scudiero DA, Monks A et al (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601

    CAS  PubMed  Google Scholar 

  22. Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  23. Dengler W, Schulte J, Berger DP et al (1995) Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 6:522–532

    Article  CAS  PubMed  Google Scholar 

  24. Crouch SPM, Kozlowski R, Slater KJ et al (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Article  CAS  PubMed  Google Scholar 

  25. Andreotti PE, Cree IA, Kurbacher CM et al (1995) Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res 55:5276–5282

    CAS  PubMed  Google Scholar 

  26. Chumsri S, Burger AM (2008) Cancer stem cell targeted agents: therapeutic approaches and consequences. Curr Opin Mol Ther 10:323–333

    CAS  PubMed  Google Scholar 

  27. Bhuvanesh D, Chang J (2009) Treatment resistance in stem cells and breast cancer. J Mammary Gland Biol Neoplasia 14(1):79–82

    Article  Google Scholar 

  28. Nakanishi T, Chumsri S, Khakpour N et al (2010) Side population cells in luminal-type breast cancer have tumor-initiating cell properties, and are regulated by HER2 expression and signaling. Br J Cancer 102:815–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–9

    Article  CAS  PubMed  Google Scholar 

  30. Aherne W, Garret M, McDonald T et al (2002) Mechanism-based high-throughput screening for novel anticancer drug discovery. In: Baguley BC, Kerr DJ (eds) Anticancer drug development. Academic, San Diego

    Google Scholar 

  31. Tian H, Ip L, Luo H et al (2007) A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. Br J Pharmacol 150(3):321–334

    Article  CAS  PubMed  Google Scholar 

  32. Goldman JM (2000) Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet 355:1031–1032

    Article  CAS  PubMed  Google Scholar 

  33. Mow BM, Chandra J, Svingen PA et al (2002) Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 99:664–671

    Article  CAS  PubMed  Google Scholar 

  34. Krystal GW, Honsawek S, Litz J et al (2000) The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res 6:3319–3326

    CAS  PubMed  Google Scholar 

  35. Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  36. Lightcap ES, McCormack TA, Pien CS et al (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46:673–683

    CAS  PubMed  Google Scholar 

  37. Badros A, Burger AM, Philip S et al (2009) Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 15:5250–5257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hartwell LH, Szankasi P, Roberts CJ et al (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068

    Article  CAS  PubMed  Google Scholar 

  39. Simon JA, Szankasi P, Nguyen DK et al (2000) Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res 60:328–333

    CAS  PubMed  Google Scholar 

  40. Kaelin WG (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698. doi:10.1038/nrc1691

    Article  CAS  PubMed  Google Scholar 

  41. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–34

    Article  CAS  PubMed  Google Scholar 

  42. Sausville EA, Burger AM (2006) Contributions of human tumor xenografts to anticancer drug development. Cancer Res 66:3351–3354

    Article  CAS  PubMed  Google Scholar 

  43. DeVita JV (1989) Principles of chemotherapy. In: DeVita VT, Hellmann S, Rosenberg SA (eds) Cancer principles & practice of oncology, 3rd edn. Lippincott, Philadelphia, pp 277–300

    Google Scholar 

  44. Salmon SE, Hamburger AW, Soehnlen B et al (1978) Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N Engl J Med 298:1321–1327

    Article  CAS  PubMed  Google Scholar 

  45. Chumsri S, Phatak P, Edelman MJ et al (2007) Cancer stem cells and individualized therapy. Cancer Genomics Proteomics 4:165–174

    CAS  PubMed  Google Scholar 

  46. Fiebig HH, Maier A, Burger AM (2004) Clonogenic assay with established human tumor xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 40:802–820

    Article  CAS  PubMed  Google Scholar 

  47. Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11:971–981

    CAS  PubMed  Google Scholar 

  48. Fiebig HH, Schüler J, Bausch N, Hofmann M, Metz T, Korrat A (2007) Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Cancer Genomics Proteomics 4:197–209

    CAS  PubMed  Google Scholar 

  49. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the German Ministry for Education and Research (BMBF) and the US National Cancer Institute, Developmental Therapeutics Program as well as from the European Commission with a grant to A. M. B. (QLG1-CT-1999-01341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika M. Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burger, A.M., Fiebig, HH. (2014). Preclinical Screening for New Anticancer Agents. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics