Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 3786 Accesses

Abstract

Cytochrome P450 (CYP, CYP450, or P450) represents the enzyme that metabolizes drugs with various manners of oxidation as the Phase I reaction. A variety of anticancer drugs are metabolized by P450, including tegafur, cyclophosphamide, ifosfamide, vinca alkaloids, tamoxifen, etoposide, docetaxel, paclitaxel, and molecular-targeting drugs. The variation in drug metabolism causes pharmacokinetic variability and may influence drug efficacy and toxicity. Drug metabolism depends on both genetic and environmental factors, which include genetic polymorphism and drug interactions (induction or inhibition of P450 activity). CYP3A4 is the major human P450 isoform with a remarkable interindividual variation in its activity. With regard to CYP3A4 and CYP3A5, environmental factors appear to influence the CYP3A enzymatic activity more than genetic status. The challenges have been made to control the phenotypic CYP3A4 activity and to reduce pharmacokinetic variability of the relevant drugs. However, the clinical advantages obtained from these efforts should be carefully evaluated in view of clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  2. Nelson DR, Koymans L, Kamataki T et al (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    Article  CAS  PubMed  Google Scholar 

  3. Kinirons MT, Crome P (1997) Clinical pharmacokinetic considerations in the elderly. an update. Clin Pharmacokinet 33:302–312

    Article  CAS  PubMed  Google Scholar 

  4. Jusko WJ (1978) Role of tobacco smoking in pharmacokinetics. J Pharmacokinet Biopharm 6:7–39

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton M, Wolf JL, Rusk J, Beard SE, Clark GM, Witt K, Cagnoni PJ (2006) Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 12(7 Pt 1):2166–2171

    Article  CAS  PubMed  Google Scholar 

  6. George J, Murray M, Byth K, Farrell GC (1995) Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21:120–128

    CAS  PubMed  Google Scholar 

  7. Winzor DJ, Ioannoni B, Reilly PB (1986) The nature of microsomal monooxygenase inhibition by cimetidine. Biochem Pharmacol 35:2157–2161

    Article  CAS  PubMed  Google Scholar 

  8. Pasanen M, Taskinen T, Iscan M, Sotaniemi EA, Kairaluoma M, Pelkonen O (1988) Inhibition of human hepatic and placental xenobiotic monooxygenases by imidazole antimycotics. Biochem Pharmacol 37:3861–3866

    Article  CAS  PubMed  Google Scholar 

  9. Ando Y, Shimizu T, Mushiroda T, Nakagawa T, Kodama T, Kamataki T (1998) Potent and nonspecific inhibition of cytochrome P450 by JM216, a new oral platinum agent. Br J Cancer 89:1170–1174

    Article  Google Scholar 

  10. Rose WC (1997) Combination chemotherapy involving orally administered etoposide and JM-216 in murine tumor models. Cancer Chemother Pharmacol 40:51–56

    Article  CAS  PubMed  Google Scholar 

  11. Whitten DL, Myers SP, Hawrelak JA, Wohlmuth H (2006) The effect of St John's wort extracts on CYP3A: a systematic review of prospective clinical trials. Br J Clin Pharmacol 62(5):512–526

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda K, Yoshisue K, Matsushima E et al (2000) Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res 6:4409–4415

    CAS  PubMed  Google Scholar 

  13. Nunoya K, Yokoi T, Kimura K et al (1998) A new deleted allele in the human cytochrome P450 2A6 (CYP2A6) gene found in individuals showing poor metabolic capacity to coumarin and (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502). Pharmacogenetics 8:239–249

    Article  CAS  PubMed  Google Scholar 

  14. Fujita K, Yamamoto W, Endo S et al (2008) CYP2A6 and plasma level of 5-chloro-2,4-dihydroxypyridine are determinants of respective variability of the pharmacokinetics of tegafur and 5-fluorouracil in Japanese patients with cancer given S-1. Cancer Sci 99:1049–1054

    Article  CAS  PubMed  Google Scholar 

  15. Boddy AV, Yule SM (2000) Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 38:291–304

    Article  CAS  PubMed  Google Scholar 

  16. Chang TKH, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53:5629–5637

    CAS  PubMed  Google Scholar 

  17. Walker D, Flinois JP, Monkman SC et al (1994) Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem Pharmacol 47:1157–1163

    Article  CAS  PubMed  Google Scholar 

  18. Ren S, Yang JS, Kalhorn TF, Slattery JT (1997) Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 57:4229–4235

    CAS  PubMed  Google Scholar 

  19. Huang Z, Roy P, Waxman DJ (2000) Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 59:961–972

    Article  CAS  PubMed  Google Scholar 

  20. Kaijser GP, Korst A, Beijnen JH, Bult A, Underberg WJ (1993) The analysis of ifosfamide and its metabolites. Anticancer Res 13:1311–1324

    CAS  PubMed  Google Scholar 

  21. Maezawa S, Ohira S, Sakuma M, Matsuoka S, Wakui A, Saito T (1981) Effects of inducer of liver drug metabolizing enzyme on blood level of active metabolites of cyclophosphamide in rats and in cancer patients. Tohoku J Exp Med 134:45–53

    Article  CAS  PubMed  Google Scholar 

  22. Jounaidi Y, Hecht JE, Waxman DJ (1998) Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res 58:4391–4401

    CAS  PubMed  Google Scholar 

  23. Roy P, Tretyakov O, Wright J, Waxman DJ (1999) Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab Dispos 27:1309–1318

    CAS  PubMed  Google Scholar 

  24. Williams ML, Wainer IW, Embree L, Barnett M, Granvil CL, Ducharme MP (1999) Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 11:569–574

    Article  CAS  PubMed  Google Scholar 

  25. Busse D, Busch FW, Schweizer E et al (1999) Fractionated administration of high-dose cyclophosphamide: influence on dose-dependent changes in pharmacokinetics and metabolism. Cancer Chemother Pharmacol 43:263–268

    Article  CAS  PubMed  Google Scholar 

  26. Lewis LD, Fitzgerald DL, Harper PG, Rogers HJ (1990) Fractionated ifosfamide therapy produces a time-dependent increase in ifosfamide metabolism. Br J Clin Pharmacol 30:725–732

    Article  CAS  PubMed  Google Scholar 

  27. Mani C, Gelboin HV, Park SS, Pearce R, Parkinson A, Kupfer D (1993) Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab Dispos 21:645–656

    CAS  PubMed  Google Scholar 

  28. Dehal S, Kupfer D (1997) CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 57:3402–3406

    CAS  PubMed  Google Scholar 

  29. Coezy E, Borgna JL, Rochefort H (1982) Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 42:317–323

    CAS  PubMed  Google Scholar 

  30. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310:1062–1075

    Article  CAS  PubMed  Google Scholar 

  31. Jin Y, Desta Z, Stearns V et al (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–99

    Article  CAS  PubMed  Google Scholar 

  32. Goetz MP, Rae JM, Suman VJ et al (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23:9312–9318

    Article  CAS  PubMed  Google Scholar 

  33. Grimm SW, Dyroff MC (1997) Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos 25:598–602

    CAS  PubMed  Google Scholar 

  34. Dowsett M, Cuzick J, Howell A (2001) Jackson I; ATAC Trialists’ Group. Pharmacokinetics of anastrozole and tamoxifen alone, and in combination, during adjuvant endocrine therapy for early breast cancer in postmenopausal women: a sub-protocol of the ‘Arimidex and tamoxifen alone or in combination’ (ATAC) trial. Br J Cancer 85:317–324

    Article  CAS  PubMed  Google Scholar 

  35. Dowsett M, Pfister C, Johnston SR et al (1999) Impact of tamoxifen on the pharmacokinetics and endocrine effects of the aromatase inhibitor letrozole in postmenopausal women with breast cancer. Clin Cancer Res 5:2338–2343

    CAS  PubMed  Google Scholar 

  36. Kamdem LK, Flockhart DA, Desta Z (2011) In vitro cytochrome P450-mediated metabolism of exemestane. Drug Metab Dispos 39(1):98–105

    Article  CAS  PubMed  Google Scholar 

  37. Kajita J, Kuwabara T, Kobayashi H, Kobayashi S (2000) CYP3A4 is mainly responsible for the metabolism of a new vinca alkaloid, vinorelbine, in human liver microsomes. Drug Metab Dispos 28:1121–1127

    CAS  PubMed  Google Scholar 

  38. Böhme A, Ganser A, Hoelzer D (1995) Aggravation of vincristine-induced neurotoxicity by itraconazole in the treatment of adult ALL. Ann Hematol 71:311–312

    Article  PubMed  Google Scholar 

  39. Weber DM, Dimopoulos MA, Alexanian R (1993) Increased neurotoxicity with VAD-cyclosporin in multiple myeloma. Lancet 341:558–559

    Article  CAS  PubMed  Google Scholar 

  40. Bertrand Y, Capdeville R, Balduck N, Philippe N (1992) Cyclosporin A used to reverse drug resistance increases vincristine neurotoxicity. Am J Hematol 40:158–159

    Article  CAS  PubMed  Google Scholar 

  41. Tobe SW, Siu LL, Jamal SA, Skorecki KL, Murphy GF, Warner E (1995) Vinblastine and erythromycin: an unrecognized serious drug interaction. Cancer Chemother Pharmacol 35:188–190

    Article  CAS  PubMed  Google Scholar 

  42. Thant M, Hawley RJ, Smith MT et al (1982) Possible enhancement of vincristine neuropathy by VP-16. Cancer 49:859–864

    Article  CAS  PubMed  Google Scholar 

  43. Griffiths JD, Stark RJ, Ding JC, Cooper IA (1986) Vincristine neurotoxicity enhanced in combination chemotherapy including both teniposide and vincristine. Cancer Treat Rep 70:519–521

    CAS  PubMed  Google Scholar 

  44. Zhou XJ, Rahmani R (1992) Preclinical can clinical pharmacology of vinca alkaloids. Drugs 44(Suppl 4):1–16, discussion 66–69

    Article  CAS  PubMed  Google Scholar 

  45. Richardson P, Hideshima T, Anderson K (2002) Thalidomide: emerging role in cancer medicine. Annu Rev Med 53:629–657

    Article  CAS  PubMed  Google Scholar 

  46. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  Google Scholar 

  47. Gordon GB, Spielberg SP, Blake DA, Balasubramanian V (1981) Thalidomide teratogenesis: evidence for a toxic arene oxide metabolite. Proc Natl Acad Sci USA 78:2545–2548

    Article  CAS  PubMed  Google Scholar 

  48. Braun AG, Harding FA, Weinreb SL (1986) Teratogen metabolism: thalidomide activation is mediated by cytochrome P-450. Toxicol Appl Pharmacol 82:175–179

    Article  CAS  PubMed  Google Scholar 

  49. Eriksson T, Björkman S, Roth B, Björk H, Hoglund P (1998) Hydroxylated metabolites of thalidomide: formation in-vitro and in-vivo in man. J Pharmaceut Pharmacol 50:1409–1416

    Article  CAS  Google Scholar 

  50. Teo SK, Sabourin PJ, O’Brien K, Kook KA, Thomas SD (2000) Metabolism of thalidomide in human microsomes, cloned human cytochrome P-450 isozymes, and Hansen’s disease patients. J Biochem Toxicol 14:140–147

    Article  CAS  Google Scholar 

  51. Ando Y, Fuse E, Figg WD (2002) Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res 8:1964–1973

    CAS  PubMed  Google Scholar 

  52. Ando Y, Price DK, Dahut WL, Cox MC, Reed E, Figg WD (2002) Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide. Cancer Biol Ther 1:669–673

    CAS  PubMed  Google Scholar 

  53. Mathijssen RH, Verweij J, de Bruijn P, Loos WJ, Sparreboom A (2002) Effects of St. John’s wort on irinotecan metabolism. J Natl Cancer Inst 94:1247–1249

    Article  CAS  PubMed  Google Scholar 

  54. Prados MD, Yung WK, Jaeckle KA et al (2004) Phase 1 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro Oncol 6:44–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706

    Article  PubMed  Google Scholar 

  56. Li J, Zhao M, He P, Hidalgo M, Baker SD (2007) Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 13:3731–3737

    Article  CAS  PubMed  Google Scholar 

  57. Inaba H, Rubnitz JE, Coustan-Smith E, Li L, Furmanski BD, Mascara GP, Heym KM, Christensen R, Onciu M, Shurtleff SA, Pounds SB, Pui CH, Ribeiro RC, Campana D, Baker SD (2011) Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol 29(24):3293–3300

    Article  CAS  PubMed  Google Scholar 

  58. Frye RF, Fitzgerald SM, Lagattuta TF, Hruska MW, Egorin MJ (2004) Effect of St John's wort on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther 76(4):323–329

    Article  CAS  PubMed  Google Scholar 

  59. Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12(16):4899–4907

    Article  CAS  PubMed  Google Scholar 

  60. van Erp NP, Gelderblom H, Karlsson MO, Li J, Zhao M, Ouwerkerk J, Nortier JW, Guchelaar HJ, Baker SD, Sparreboom A (2007) Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res 13(24):7394–7400

    Article  PubMed  Google Scholar 

  61. Tanaka C, Yin OQ, Smith T, Sethuraman V, Grouss K, Galitz L, Harrell R, Schran H (2011) Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 51(1):75–83

    Article  CAS  PubMed  Google Scholar 

  62. Venkatakrishnan K, Rader M, Ramanathan RK, Ramalingam S, Chen E, Riordan W, Trepicchio W, Cooper M, Karol M, von Moltke L, Neuwirth R, Egorin M, Chatta G (2009) Effect of the CYP3A inhibitor ketoconazole on the pharmacokinetics and pharmacodynamics of bortezomib in patients with advanced solid tumors: a prospective, multicenter, open-label, randomized, two-way crossover drug-drug interaction study. Clin Ther 31(Pt 2):2444–2458

    Article  CAS  PubMed  Google Scholar 

  63. Quinn DI, Nemunaitis J, Fuloria J, Britten CD, Gabrail N, Yee L, Acharya M, Chan K, Cohen N, Dudov A (2009) Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin's lymphoma or multiple myeloma. Clin Pharmacokinet 48(3):199–209

    Article  CAS  PubMed  Google Scholar 

  64. Boni J, Leister C, Burns J, Cincotta M, Hug B, Moore L (2007) Pharmacokinetic profile of temsirolimus with concomitant administration of cytochrome p450-inducing medications. J Clin Pharmacol 47(11):1430–1439

    Article  CAS  PubMed  Google Scholar 

  65. Kovarik JM, Hartmann S, Figueiredo J, Rouilly M, Port A, Rordorf C (2002) Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 36(6):981–985

    Article  CAS  PubMed  Google Scholar 

  66. Eiselt R, Domanski TL, Zibat A et al (2001) Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11:447–458

    Article  CAS  PubMed  Google Scholar 

  67. Dally H, Edler L, Jäger B, Schmezer P, Spiegelhalder B, Dienemann H, Drings P, Schulz V, Kayser K, Bartsch H, Risch A (2003) The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 13(10):607–618

    Article  CAS  PubMed  Google Scholar 

  68. Zeigler-Johnson CM, Walker AH, Mancke B, Spangler E, Jalloh M, McBride S, Deitz A, Malkowicz SB, Ofori-Adjei D, Gueye SM, Rebbeck TR (2002) Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered 54(1):13–21

    Article  CAS  PubMed  Google Scholar 

  69. Baker SD, Verweij J, Cusatis GA et al (2009) Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 85:155–163

    Article  CAS  PubMed  Google Scholar 

  70. Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54(10):1271–1294

    Article  CAS  PubMed  Google Scholar 

  71. Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R (1996) Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 56:1296–1302

    CAS  PubMed  Google Scholar 

  72. Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV (1998) Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 8:391–401

    Article  CAS  PubMed  Google Scholar 

  73. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH (2000) The effect of an individual’s cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 6:1255–1258

    CAS  PubMed  Google Scholar 

  74. Yamamoto N, Tamura T, Kamiya Y, Sekine I, Kunitoh H, Saijo N (2000) Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J Clin Oncol 18:2301–2308

    CAS  PubMed  Google Scholar 

  75. Fujitaka K, Oguri T, Isobe T, Fujiwara Y, Kohno N (2001) Induction of cytochrome P450 3A4 by docetaxel in peripheral mononuclear cells and its expression in lung cancer. Cancer Chemother Pharmacol 48:42–46

    Article  CAS  PubMed  Google Scholar 

  76. Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR (1994) O-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 45:352–358

    CAS  PubMed  Google Scholar 

  77. Minami H, Shimokata K, Saka H et al (1993) Phase I clinical and pharmacokinetic study of a 14-day infusion of etoposide in patients with lung cancer. J Clin Oncol 11:1602–1608

    CAS  PubMed  Google Scholar 

  78. Hande KR, Krozely MG, Greco FA, Hainsworth JD, Johnson DH (1993) Bioavailability of low-dose oral etoposide. J Clin Oncol 11:374–377

    CAS  PubMed  Google Scholar 

  79. Kobayashi K, Ratain MJ, Fleming GF, Vogelzang NJ, Cooper N, Sun BL (1996) A phase I study of CYP3A4 modulation of oral (po) etoposide with ketoconazole (KCZ) in patients (pts) with advanced cancer (CA). Proc Am Soc Clin Oncol 15:471

    Google Scholar 

  80. Miller AA, Herndon JE 2nd, Hollis DR, Ellerton J, Langleben A, Richards F 2nd, Green MR (1995) Schedule dependency of 21-day oral versus 3-day intravenous etoposide in combination with intravenous cisplatin in extensive-stage small-cell lung cancer: a randomized phase III study of the Cancer and Leukemia Group B. J Clin Oncol 13(8):1871–1879

    CAS  PubMed  Google Scholar 

  81. Malingre MM, Richel DJ, Beijnen JH et al (2001) Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J Clin Oncol 19:1160–1166

    CAS  PubMed  Google Scholar 

  82. Chico I, Kang MH, Bergan R et al (2001) Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. J Clin Oncol 19:832–842

    CAS  PubMed  Google Scholar 

  83. Kang MH, Figg WD, Ando Y et al (2001) The P-glycoprotein antagonist PSC 833 increases the plasma concentrations of 6-α-hydroxypaclitaxel, a major metabolite of paclitaxel. Clin Cancer Res 7:1610–1617

    CAS  PubMed  Google Scholar 

  84. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW (1994) Selective biotransformation of taxol to 6-α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 54:5543–5546

    CAS  PubMed  Google Scholar 

  85. Rodman JH, Murry DJ, Madden T, Santana VM (1992) Pharmacokinetics of high doses of etoposide and the influence of anticonvulsants in pediatric cancer patients. Clin Pharmacol Ther 51:156

    Google Scholar 

  86. Ando Y, Minami H, Saka H, Ando M, Sakai S, Shimokata K (1996) Therapeutic drug monitoring in 21-day oral etoposide treatment for lung cancer. Jpn J Cancer Res 87:856–861

    Article  CAS  PubMed  Google Scholar 

  87. Picard S, Titier K, Etienne G et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109:3496–3499

    Article  CAS  PubMed  Google Scholar 

  88. Demetri GD, Wang Y, Wehrle E et al (2009) Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol 27:3141–3147, Epub 2009 May 18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Ando M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ando, Y. (2014). Cytochrome P450. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics